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This supplement to the SESAP 2008 talk (in Raleigh, NC, USA; SES08-2008-000089) details the
shown algebraic representation per V. Dzhunushaliev, arXiv:0805.3221, “A hidden nonassociative
structure in quantum mechanics”, equations (17) through (20), using complex octonions C ® O =
0 0.

A. Definition of complex octonions
“Complex octonions” are octonions with complex coefficients. They are synonymous with “conic sedenions” in some
other publications. Here the octonion basis bg := {1,41,...,47} is chosen, with
Zmln = amnlil - 5mn (1)

and totally antisymmetric a,,,; and

Amnt = +1 (2)
for mnl € {123,145,176,246, 257,347,365} . (3)
The complex number coefficients are written to basis bc := {1,i9} where i3 = —1 and ip multiplication is associative,

commutative, and distributive with all other basis elements. The product of iy and i,, is written

i0in = —€n. (4)

B. Decomposition rules

The following relations will now be modeled using complex octonions:

{R',R"} = 0, (B1)

[RM,RY] = 2MM, (B2a)

[MH7,MP7] = g (0" MM + 57 MYP = M7 =" MP) - (B3)
(R*,R,R?) = (R*R") R” — R" (R"RF) = 2c""°R,, (Bdal)
(R*,R",R") = —(R’,R",R"). (B4a2)

We're using n? = diag (1,—1,—1,—1).

C. Modeling the M*"

Per relation (B2a), the M*” must be totally anti-symmetric, which determines M** = 0 and M*” = —M"*. That
leaves six independent parameters, which will be chosen as:
0 i1 ig i3
1 —’il 0 —€3 €2
wo._ -
M ) —i2 €3 0 —e ’ (5)
72‘3 —€y €1 0

with 7971 = —e€1 and similar.
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Now, testing relation (B3):

1. If M* = M?*? then the commutator is zero (trivial).

2. If u=v or p=o, then either M*” or M*’ must be zero =>(B3) tests OK.
3. If all four {u, v, p, o} are different, then M*” must be +iqgM*7:

MO = % = “’% — —igM?, (6)

MOQZZ;Q = ioﬁ:iOMB (7)
2 2 ’

MO =2 = 2= M2, (8)

But, because i¢ is commutative, the commutator in (B3) must be zero as well, as required. The remaining
combinations are permutations of these three relations =-(B3) tests OK.

4. That leaves only the following combinations, and trivial permutations thereof:

[]\/lol’MOﬂ _ %3 _ i()% = —ion®' M2, 9)
(MO, MO3] = _%2 _ _i()% — g M"2, (10)
[MU,MB] _ _%1 _ _i()% — i M, (11)
[M™, M) = _%3 _ % — iy M, (12)
(M2, M2 = _%1 _ % — i MO, (13)
(M2, M%) = _%3 _ % — iM%, (14)
(M3, M3 = _%1 _ % — i3 MO, (15)
(M, 11%2] = 7%2 _ % = —ign33MO2. (16)

All remaining combinations are obtained by either by switching the arguments of the commutator, or by switch-
ing the indices of the M*¥. Because the commutator and also the M*¥ are anti-symmetric =—>(B3) tests
OK.

D. Modeling the R"

Having (B3) satisfied, the remaining R* are modeled using commutative and associative factors a*:

RY := a%y, (17)
R := a'is, (18)
R? = d%ig, (19)
R® = d%i. (20)

The R* are therefore modeled from the anti-commutative, anti-associative four-tuple {iy, 5, ig, i7} from the octonions,
and supplied with a commutative and associative factor a*. This way, they immediately satisfy relation (B1) and
(B4a-2).
For relation (B2a), [R*, RY] = 2M*", we have:
[R°,R'] = 2a"'i; = 4a%a' M, (21)
[RO7 RQ} 2a%a%iy = 4a%a®> M2, (22)
[R°, R?*] = 2a"a%i3 = 4a°a®M®, (23)



[R', R?] = —2a'a%is = —2a'a’ige3 = 4a'a®igM"?, (24)
[R17 R?’} = 2ata’iy = 2atadiges = datadig M3, (25)
[RQ,R?’} = —2d%a%i, = —2d2a3ige; = 4a2dPig M. (26)

The relations between the indices of R* and M*” are already correct, lastly the (commutative, associative) a*a”
products will be adjusted.

The products a®a’ (j = 1,2, 3) don’t have to compensate a factor 7o, whereas all other products a’a* (j,k =1,2,3
and j # k) have to compensate a factor i9. We can therefore chose:

a® = %" (27)
o = \/;To (j=1,2,3), (28)
with Vig = %(1—%1‘0), (29)
% _ %(140). (30)

That satisfies relation (B2a).

With all R* determined, the remaining relation (B4a-1) needs to be checked. Because the R* are alternative, but
anti-associative and anti-commutative, we can confirm that the associator (R*, R”, R?) is totally anti-symmetric as
required. The product of three factors (using R’ = Ry and R’ = —R;) is:

1

(RORl) R? = 2a%ta? (iyig) = ” (—i7) = ¥123 Ry, (50123 = 41,7 = _1) (31)

(R°R") R* = 2a"a'd® (ivi7) = ;0 ig=e""PRy, (" =-1,9"=-1) (32)

(R°R?*) R® = 2a%ad® (igir) = \/;To (—is) = Ry, (" =+1,9' = -1) (33)

(R'R*) R® = —2da'a’a’® (isi7) = 12i3 iy = —\/§i4 =R, (¢ =-1,9"=1) (34)
0

The last line used 1/1/33 = v/io/\/ig = —/io.

E. Result summary

We can model relations (B1), (B2a), (B3), and (B4a-1/2) from above through complex octonions (conic sedenions)
as:

pro_ T
M T 2 —1lo €3 0 —€ ’ (35)
—13 —€9 €1 0
R® = %4(1“0), (36)
R = ”7“(1—@'0). (37)

Minkowski metric was chosen 1”? = diag (1,—1, -1, —1).



F. Addendum: Isomorphisms

Split-octonions are a subalgebra of the complex octonions, and several different notations exist. This sections
quickly cross-references isomorphisms. In the notation here, a split-octonion basis can be chosen e.g. as:

beplit-o = {1, 11,02, i3, €4, €5, €6, €7} -
This maps directly to notation chosen by Merab Gogberashvili (e.g. arXiv:0808.2496) as:
bsplit-o = {1, 71,2, J3, 1, J1, J2, Js} .

The following notation is also used at times, based on quaternions bg := {1,4, j, k} and non-real basis element | with
?=1

bsplit—@ = {L iaja kv 717 711, 7lja 71/6} .
In “Zorn’s vector matrix” algebra, this basis is isomorphic to:

“eplit-0 = {[(Oﬁvm (07?’0)}’[(—1%,0) (1’8’0)}’[@7—01,0) (0’3’0)} ’ {<0,o(,)—1) (0’8’1)]’

[(o,(ﬁ()) (07(1)’0)}7[(—1?070) (1’00’0)} ’ [(07—01,0) (0’0170)}’[(0,0?—1) (0’061)”'

Note that Zorn’s vector matrix product is defined differently from regular matrix algebra.



