Supplement to "Non-associative decomposition of angular momentum operator using complex octonions"

Jens Köplinger, Vladimir Dzhunushaliev* (Dated: 30 October 2008)

This supplement to the SESAP 2008 talk (in Raleigh, NC, USA; SES08-2008-000089) details the shown algebraic representation per V. Dzhunushaliev, arXiv:0805.3221, "A hidden nonassociative structure in quantum mechanics", equations (17) through (20), using complex octonions $\mathbb{C} \otimes \mathbb{O} \equiv \mathbb{O} \oplus \mathbb{O}$.

A. Definition of complex octonions

"Complex octonions" are octonions with complex coefficients. They are synonymous with "conic sedenions" in some other publications. Here the octonion basis $b_{\mathbb{O}} := \{1, i_1, \ldots, i_7\}$ is chosen, with

$$i_m i_n = a_{mnl} i_l - \delta_{mn} \tag{1}$$

and totally antisymmetric a_{mnl} and

$$a_{mnl} = +1 \tag{2}$$

for
$$mnl \in \{123, 145, 176, 246, 257, 347, 365\}.$$
 (3)

The complex number coefficients are written to basis $b_{\mathbb{C}} := \{1, i_0\}$ where $i_0^2 = -1$ and i_0 multiplication is associative, commutative, and distributive with all other basis elements. The product of i_0 and i_n is written

$$i_0 i_n = -\epsilon_n. \tag{4}$$

B. Decomposition rules

The following relations will now be modeled using complex octonions:

$$\{R^{\mu}, R^{\nu}\} = 0, \tag{B1}$$

$$[R^{\mu}, R^{\nu}] = 2M^{\mu\nu}, \tag{B2a}$$

$$[M^{\mu\nu}, M^{\rho\sigma}] = i_0 \left(\eta^{\nu\rho} M^{\mu\sigma} + \eta^{\mu\sigma} M^{\nu\rho} - \eta^{\mu\rho} M^{\nu\sigma} - \eta^{\nu\sigma} M^{\mu\rho} \right), \qquad (B3)$$

$$(R^{\mu}, R^{\nu}, R^{\rho}) = (R^{\mu}R^{\nu}) R^{\rho} - R^{\mu} (R^{\nu}R^{\rho}) = 2\varepsilon^{\mu\nu\rho\sigma}R_{\sigma},$$
(B4a1)

$$(R^{\mu}, R^{\nu}, R^{\rho}) = -(R^{\rho}, R^{\nu}, R^{\mu}).$$
(B4a2)

We're using $\eta^{\nu\rho} = diag (1, -1, -1, -1).$

C. Modeling the $M^{\mu\nu}$

Per relation (B2a), the $M^{\mu\nu}$ must be totally anti-symmetric, which determines $M^{\mu\mu} = 0$ and $M^{\mu\nu} = -M^{\nu\mu}$. That leaves six independent parameters, which will be chosen as:

$$M^{\mu\nu} := \frac{1}{2} \begin{pmatrix} 0 & i_1 & i_2 & i_3 \\ -i_1 & 0 & -\epsilon_3 & \epsilon_2 \\ -i_2 & \epsilon_3 & 0 & -\epsilon_1 \\ -i_3 & -\epsilon_2 & \epsilon_1 & 0 \end{pmatrix},$$
(5)

with $i_0 i_1 = -\epsilon_1$ and similar.

^{*}Electronic address: jens@prisage.com,vdzhunus@krsu.edu.kg

Now, testing relation (B3):

- 1. If $M^{\mu\nu} = M^{\rho\sigma}$ then the commutator is zero (trivial).
- 2. If $\mu = \nu$ or $\rho = \sigma$, then either $M^{\mu\nu}$ or $M^{\rho\sigma}$ must be zero \Longrightarrow (B3) tests OK.
- 3. If all four $\{\mu, \nu, \rho, \sigma\}$ are different, then $M^{\mu\nu}$ must be $\pm i_0 M^{\rho\sigma}$:

$$M^{01} = \frac{i_1}{2} = \frac{i_0 \epsilon_1}{2} = -i_0 M^{23}, \tag{6}$$

$$M^{02} = \frac{i_2}{2} = \frac{i_0 \epsilon_2}{2} = i_0 M^{13}, \tag{7}$$

$$M^{03} = \frac{i_3}{2} = \frac{i_0\epsilon_3}{2} = -i_0 M^{12}, \tag{8}$$

But, because i_0 is commutative, the commutator in (B3) must be zero as well, as required. The remaining combinations are permutations of these three relations \implies (B3) tests OK.

4. That leaves only the following combinations, and trivial permutations thereof:

$$\left[M^{01}, M^{02}\right] = \frac{i_3}{2} = \frac{i_0\epsilon_3}{2} = -i_0\eta^{00}M^{12}, \tag{9}$$

$$\left[M^{01}, M^{03}\right] = -\frac{i_2}{2} = -\frac{i_0\epsilon_2}{2} = -i_0\eta^{00}M^{12}, \tag{10}$$

$$\left[M^{12}, M^{13}\right] = -\frac{i_1}{2} = -\frac{i_0\epsilon_1}{2} = -i_0\eta^{11}M^{23},\tag{11}$$

$$\left[M^{10}, M^{13}\right] = -\frac{\epsilon_3}{2} = \frac{i_0 i_3}{2} = -i_0 \eta^{11} M^{03}, \tag{12}$$

$$\left[M^{20}, M^{21}\right] = -\frac{\epsilon_1}{2} = \frac{i_0 i_1}{2} = -i_0 \eta^{22} M^{01}, \tag{13}$$

$$\left[M^{20}, M^{23}\right] = -\frac{\epsilon_3}{2} = \frac{i_0 i_3}{2} = -i_0 \eta^{22} M^{03}, \tag{14}$$

$$\left[M^{30}, M^{31}\right] = -\frac{\epsilon_1}{2} = \frac{i_0 i_1}{2} = -i_0 \eta^{33} M^{01}, \qquad (15)$$

$$\left[M^{30}, M^{32}\right] = -\frac{\epsilon_2}{2} = \frac{i_0 i_2}{2} = -i_0 \eta^{33} M^{02}.$$
(16)

All remaining combinations are obtained by either by switching the arguments of the commutator, or by switching the indices of the $M^{\mu\nu}$. Because the commutator and also the $M^{\mu\nu}$ are anti-symmetric \Longrightarrow (B3) tests OK.

D. Modeling the R^{μ}

Having (B3) satisfied, the remaining R^{μ} are modeled using commutative and associative factors a^{μ} :

$$R^0 := a^0 i_4, (17)$$

$$R^1 := a^1 i_5, (18)$$

$$R^{2} := a^{2}i_{6}, \tag{19}$$

$$R^3 := a^3 i_7. (20)$$

The R^{μ} are therefore modeled from the anti-commutative, anti-associative four-tuple $\{i_4, i_5, i_6, i_7\}$ from the octonions, and supplied with a commutative and associative factor a^{μ} . This way, they immediately satisfy relation (B1) and (B4a-2).

For relation (B2a), $[R^{\mu}, R^{\nu}] = 2M^{\mu\nu}$, we have:

$$[R^0, R^1] = 2a^0 a^1 i_1 = 4a^0 a^1 M^{01}, (21)$$

$$\begin{bmatrix} R & , R \end{bmatrix} = 2a^{0}a^{2}i_{2} = 4a^{0}a^{2}M^{02},$$

$$\begin{bmatrix} R^{0}, R^{2} \end{bmatrix} = 2a^{0}a^{2}i_{2} = 4a^{0}a^{2}M^{02},$$
(21)

$$[R^0, R^3] = 2a^0 a^3 i_3 = 4a^0 a^3 M^{03}, (23)$$

$$[R^1, R^2] = -2a^1 a^2 i_3 = -2a^1 a^2 i_0 \epsilon_3 = 4a^1 a^2 i_0 M^{12}, \qquad (24)$$

$$[R^1, R^3] = 2a^1 a^3 i_2 = 2a^1 a^3 i_0 \epsilon_2 = 4a^1 a^3 i_0 M^{13},$$
(25)

$$[R^2, R^3] = -2a^2a^3i_1 = -2a^2a^3i_0\epsilon_1 = 4a^2a^3i_0M^{23}.$$
(26)

The relations between the indices of R^{μ} and $M^{\mu\nu}$ are already correct, lastly the (commutative, associative) $a^{\mu}a^{\nu}$ products will be adjusted.

The products $a^0 a^j$ (j = 1, 2, 3) don't have to compensate a factor i_0 , whereas all other products $a^j a^k$ (j, k = 1, 2, 3) and $j \neq k$ have to compensate a factor i_0 . We can therefore chose:

$$a^0 := \sqrt{\frac{i_0}{2}},$$
 (27)

$$a^{j} := \frac{1}{\sqrt{2i_0}} \qquad (j = 1, 2, 3),$$
(28)

with
$$\sqrt{i_0} = \frac{1}{\sqrt{2}} (1+i_0),$$
 (29)

$$\frac{1}{\sqrt{i_0}} = \frac{1}{\sqrt{2}} \left(1 - i_0 \right). \tag{30}$$

That satisfies relation (B2a).

With all R^{μ} determined, the remaining relation (B4a-1) needs to be checked. Because the R^{μ} are alternative, but anti-associative and anti-commutative, we can confirm that the associator $(R^{\mu}, R^{\nu}, R^{\sigma})$ is totally anti-symmetric as required. The product of three factors (using $R^0 = R_0$ and $R^i = -R_i$) is:

$$(R^{0}R^{1})R^{2} = 2a^{0}a^{1}a^{2}(i_{1}i_{6}) = \frac{1}{\sqrt{2i_{0}}}(-i_{7}) = \varepsilon^{0123}R_{3}, \qquad (\varepsilon^{0123} = +1, \eta^{33} = -1)$$
(31)

$$(R^{0}R^{1})R^{3} = 2a^{0}a^{1}a^{3}(i_{1}i_{7}) = \frac{1}{\sqrt{2i_{0}}}i_{6} = \varepsilon^{0132}R_{2}, \qquad (\varepsilon^{0132} = -1, \eta^{22} = -1)$$
(32)

$$(R^0 R^2) R^3 = 2a^0 a^2 a^3 (i_2 i_7) = \frac{1}{\sqrt{2i_0}} (-i_5) = \varepsilon^{0231} R_1, \qquad (\varepsilon^{0231} = +1, \eta^{11} = -1)$$

$$(33)$$

$$(R^{1}R^{2})R^{3} = -2a^{1}a^{2}a^{3}(i_{3}i_{7}) = \frac{1}{\sqrt{2i_{0}^{3}}}i_{4} = -\sqrt{\frac{i_{0}}{2}}i_{4} = \varepsilon^{1230}R_{0}. \qquad (\varepsilon^{1230} = -1, \eta^{00} = 1)$$
(34)

The last line used $1/\sqrt{i_0^3} = \sqrt{i_0}/\sqrt{i_0^4} = -\sqrt{i_0}$.

E. Result summary

We can model relations (B1), (B2a), (B3), and (B4a-1/2) from above through complex octonions (conic sedenions) as:

$$M^{\mu\nu} := \frac{1}{2} \begin{pmatrix} 0 & i_1 & i_2 & i_3 \\ -i_1 & 0 & -\epsilon_3 & \epsilon_2 \\ -i_2 & \epsilon_3 & 0 & -\epsilon_1 \\ -i_3 & -\epsilon_2 & \epsilon_1 & 0 \end{pmatrix},$$
(35)

$$R^0 := \frac{i_4}{2} (1+i_0), \qquad (36)$$

$$R^{j} := \frac{i_{j+4}}{2} \left(1 - i_{0} \right). \tag{37}$$

Minkowski metric was chosen $\eta^{\nu\rho}=diag\,(1,-1,-1,-1).$

F. Addendum: Isomorphisms

Split-octonions are a subalgebra of the complex octonions, and several different notations exist. This sections quickly cross-references isomorphisms. In the notation here, a split-octonion basis can be chosen e.g. as:

$$b_{\text{split-}\mathbb{O}} := \{1, i_1, i_2, i_3, \epsilon_4, \epsilon_5, \epsilon_6, \epsilon_7\}$$

This maps directly to notation chosen by Merab Gogberashvili (e.g. arXiv:0808.2496) as:

$$b_{\text{split}-\mathbb{O}} \equiv \{1, j_1, j_2, j_3, I, J_1, J_2, J_3\}.$$

The following notation is also used at times, based on quaternions $b_{\mathbb{Q}} := \{1, i, j, k\}$ and non-real basis element l with $l^2 = 1$:

$$b_{\text{split}-\mathbb{O}} \equiv \{1, i, j, k, -l, -li, -lj, -lk\}.$$

In "Zorn's vector matrix" algebra, this basis is isomorphic to:

$$\begin{split} b_{\text{split-}\mathbb{O}} \; &\equiv \; \left\{ \left[\begin{array}{cc} 1 & (0,0,0) \\ (0,0,0) & 1 \end{array} \right], \left[\begin{array}{cc} 0 & (1,0,0) \\ (-1,0,0) & 0 \end{array} \right], \left[\begin{array}{cc} 0 & (0,1,0) \\ (0,-1,0) & 0 \end{array} \right], \left[\begin{array}{cc} 0 & (0,0,1) \\ (0,0,-1) & 0 \end{array} \right], \\ \left[\begin{array}{cc} -1 & (0,0,0) \\ (0,0,0) & 1 \end{array} \right], \left[\begin{array}{cc} 0 & (-1,0,0) \\ (-1,0,0) & 0 \end{array} \right], \left[\begin{array}{cc} 0 & (0,-1,0) \\ (0,-1,0) & 0 \end{array} \right], \left[\begin{array}{cc} 0 & (0,0,-1) \\ (0,0,-1) & 0 \end{array} \right] \right\}, \end{split}$$

Note that Zorn's vector matrix product is defined differently from regular matrix algebra.