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om Abstra
tUsing o
too
tonions (i.e., o
tonions with o
tonion 
oe�
ients O×O), this paper expressessele
t �ndings from nonasso
iative quantum theory in harmonized notation: Nonrelativisti
and relativisti
 spin operator, Pauli and Dira
 matri
es, Dira
 equation with ele
tromagneti
and gravitational �eld, and dimensional redu
tion from quaternioni
 spin. A generalizationof the dimensional redu
tion program is proposed, to argue that o
too
tonion algebra iswide enough to model a spe
ulated quantum theory that 
ontains all symmetries of theStandard Model, together with four dimensional Eu
lidean quantum gravity. The mostnarrow 
andidate for su
h a formulation 
onsists of four generalized Dira
 matri
es, anda four dimensional operator spa
e with asso
iated �elds and 
harges. Algebrai
 propertiesof this relation will be dis
ussed, together with a lands
ape 
hoi
e between all possibleo
too
tonioni
 relations of similar kind.2000 MSC: 81R151 Introdu
tionRe
ent development towards a quantum theory on nonasso
iative algebra addressed many im-portant items, typi
ally on o
tonioni
 algebras, in
luding o
tonioni
 ele
trodynami
s, geometri
relation between the light 
one and Heisenberg un
ertainty [1℄, four dimensional Eu
lidean op-erator quantum gravity [2℄, unobservability in nonasso
iative parts of quantum operators [3℄,nonasso
iative de
omposition of supersymmetri
 momentum and spin operators [4, 5℄, and dy-nami
 operator formulation with nonasso
iative Hamiltonian [6℄. While these individual workspropose to answer relevant questions within their s
ope, the di�eren
e in notation and 
onven-tions makes it di�
ult at times to pie
e these together, to potentially form a 
onsistent andultimately 
omplete quantum theory on nonasso
iative ba
kground.Working towards this goal, this paper uses a 
ommon notation a
ross sele
t �ndings, andmerges these into a prototype formulation on o
too
tonions. The similarity to an earlier pro-posed dimensional redu
tion 
onstru
tion [7℄ is used to argue for a generalized 
onstru
tion ono
too
tonion algebra. It is shown how this o�ers enough �exibility to in
lude ele
tromagneti
and gravitational �elds, while the remaining freedoms in the formulation will expose desired
SU (2) and SU (3) symmetries.Open questions in
lude general solvability of a di�erential equation on nonasso
iative algebra,investigation into the behavior of �elds that keep the formulation invariant under all of itssymmetries, understanding properties of lands
ape 
hoi
es other than the one in this paper,and more generally, understanding nonasso
iative quantum theory used herein, as 
ompared totraditional quantum �eld theory. As with any proposed uni�ed des
ription of the fundamentalfor
es, the origin of the hierar
hy problem remains un
ertain. It will be argued that 4D Eu
lidean



2 J. Köplingerquantum gravity used in this paper satis�es, at least in prin
iple, an earlier solution [8℄ of thehierar
hy problem, that requires a nonlo
al Ma
hian response to all matter within the horizonof a lo
al experiment, explaining the weakness of gravity as 
ompared to the ele
troweak s
ale.It is 
on
luded that further examination of the des
ription in this paper will give a goodunderstanding of appli
ability for o
too
tonion modelling of for
es of nature, and possibly givefurther insight into the meaning of quantum theory on nonasso
iative ba
kground in general.2 O
too
tonionsO
too
tonions, O⊗O, are o
tonions with o
tonion 
oe�
ients. An o
tonion basis is
bO := {e0, e1, e2, . . . , e7} , (2.1)with e0 ≡ 1 the identity element under multipli
ation, and {e1, e2, . . . , e7} the anti
ommutative,nonreal o
tonion basis elements. Multipli
ation between the o
tonion basis elements eµ is de�nedas:
eµeν = ǫµνρeρ − δµν , (2.2)
ǫµνρ = +1 for µνρ ∈ {123, 145, 176, 246, 257, 347, 365} . (2.3)Here, the {eµ, eν , eρ} form asso
iative 3-
y
les.An o
too
tonion A 
an then be written as:
A :=

7∑

µ=0

~aµeµ. (2.4)The ~aµ are also o
tonions ea
h. This 
an be expressed to real number 
oe�
ients aµν̇ as:
A :=

7∑

µ=0

7∑

ν̇=0

aµν̇eµeν̇ . (2.5)The index ν̇ is written with a dot, to indi
ate that its asso
iated o
tonion basis eν̇ is separatefrom the o
tonion basis with undotted indi
es. Instead, the o
tonion basis element with dottedindex is 
hosen to represent the o
tonion basis of the 
oe�
ient:
~aµ :=

7∑

ν̇=0

aµν̇eν̇ . (2.6)O
tonion basis elements with dotted indi
es 
ommute, asso
iate, and distribute with basiselements with undotted indi
es, i.e.:
eν̇eµ = eµeν̇ , (2.7)

eν̇ (eµeρ) = (eν̇eµ) eρ, (2.8)and so on. The o
too
tonion basis elements 
an be abbreviated as:
bO⊗O := {e0, e1, e2, . . . , e7} ⊗ {e0̇, e1̇, e2̇, . . . , e7̇} (2.9)

= {eµeν̇} where µ, ν ∈ {0, 1, . . . , 7} . (2.10)



Nonasso
iative quantum theory on o
too
tonion algebra 3Here, the real axis 
orresponds to e0e0̇.Ea
h o
too
tonion is expressed as a pair of basis elements, one dotted and one undotted. Ifonly one o
too
tonion basis element is written, the other is inferred, i.e.:
eµ ≡ eµe0̇, (2.11)
eµ̇ ≡ eµ̇e0. (2.12)3 Nonasso
iative de
omposition of the spin operator3.1 Chirality of (split-)o
tonionsMultipli
ation in o
tonion and split-o
tonion algebra is generally nonasso
iative, but governedby seven asso
iative triplets {ql, qm, qn}. Together with anti
ommutation rules, the 
hoi
e oftriplets �xes the multipli
ation table of the (split-)o
tonion. The asso
iative triplets in [4℄ are:

qlqm = qn, (3.1)where lmn ∈ {123, 156, 174, 264, 275, 345, 376} . (3.2)The asso
iative 3-
y
les of the o
tonion basis used in this paper (equation 2.3 above) 
orre-sponds to asso
iative triplets of a 
hosen split-o
tonion subalgebra in the o
too
tonions, e.g.:
bsplit−O := {e0e0̇, e0e1̇, e0e2̇, e0e3̇, e1e4̇, e1e5̇, e1e6̇, e1e7̇} (3.3)

≡ {1, e1̇, e2̇, e3̇, e1e4̇, e1e5̇, e1e6̇, e1e7̇} , (3.4)
alam = an for all al, am, an ∈ bsplit−O when (3.5)
lmn ∈ {123, 145, 176, 246, 257, 347, 365} . (3.6)When mapping split-o
tonion basis elements from [4℄ to the notation here,

al ←→ qm, (3.7)there must ne
essarily be at least one asso
iative triplet with the opposite sign. The reaons forthis 
an be understood as the two multipli
ation tables having opposite 
hirality1.The following mapping is now 
hosen:
{1, q1, q2, q3, q4, q5, q6, q7} 7−→ {1, e1̇, e2̇, e3̇, e1e5̇, e1e6̇, e1e7̇, e1e4̇} , (3.8){

123, 156, 174, 264, 275, 345, 376
}
7−→

{
123, 145, 176, 246, 257, 347, 365

}
, (3.9)

ı 7−→ e1e0̇ ≡ e1. (3.10)In this notation, equation (3.8) expresses the mapping of basis elements, and equation (3.9)indi
ates the asso
iative triplet that is 
hanged into the opposite 
hirality (i.e., from left-handedto right-handed, or vi
e versa). Equation (3.10) maps the 
omplex basis ı onto e1e0̇, whi
h isitself not part of the split-o
tonion basis, but satis�es the algebrai
 relations of the split-o
tonionswhen paired with a dotted o
tonion basis element.As a result of the 
hirality 
hange, produ
ts involving both basis elements q4, q5 will be mappedinto the opposite sign, as 
ompared to the individual basis elements, i.e.:
uq3 7−→

{
ue3̇ if u /∈ {q4,q5} ,
−ue3̇ otherwise, (3.11)1A similar 
on
ept is 
alled left-/right-o
tonions here [9℄.
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uq4 7−→

{
u (e1e5̇) if u /∈ {q3,q5} ,
−u (e1e5̇) otherwise, (3.12)

uq5 7−→

{
u (e1e6̇) if u /∈ {q3,q4} ,
−u (e1e6̇) otherwise. (3.13)All other basis element produ
ts are mapped without su
h a 
hange.3.2 Nonrelativisti
 spin operatorIn the notation of this paper, the nonrelativisti
 spin operators from [4℄ be
ome:

ŝi =
ı

2
qi = −

ı

4
ǫijkq(j+3)q(k+3), (3.14)
i, j, k ∈ {1, 2, 3} . (3.15)

ŝ1 =
ı

2
q1 =

ı

4
(q6q5 − q5q6) 7−→

e1
4

(e1e7̇e1e6̇ − e1e6̇e1e7̇) (3.16)
= −

e1
4

(e7̇e6̇ − e6̇e7̇) , (3.17)
ŝ2 =

ı

2
q2 =

ı

4
(q4q6 − q6q4) 7−→

e1
4

(e1e5̇e1e7̇ − e1e7̇e1e5̇) (3.18)
= −

e1
4

(e5̇e7̇ − e7̇e5̇) , (3.19)
ŝ3 =

ı

2
q3 =

ı

4
(q5q4 − q4q5)

(*)
7−→

e1
4

(e1e6̇e1e5̇ − e1e5̇e1e6̇) (3.20)
= −

e1
4

(e6̇e5̇ − e5̇e6̇) . (3.21)The last mapping is marked with (*), to indi
ate the 
hirality 
hange of the spin operator, asthe right side would otherwise 
orrespond to −ŝ3 (rather than ŝ3).In abbreviated form,
ŝi =

e1
4
ǫijke ˙(j+4)

e ˙(k+4)
, (3.22)

i, j, k ∈ {1, 2, 3} , (3.23)the spin operator is de
omposed into o
tonion basis elements with [
e ˙(j+4)

]2
=

[
e ˙(k+4)

]2
= −1.This 
ould also be written using split-o
tonion basis elements, i.e.:

ŝi = −
e1
4
ǫijk

[
e1e ˙(j+4)

] [
e1e ˙(k+4)

]
, (3.24)sin
e the e21 = −1 
an
el ea
h other out.A fa
tor 1± e1 yields another valid de
omposition of (3.22) with:

(1± e1)
2 = ±2e1, (3.25)
ŝi = ±

1

4
ǫijk

[
1

2
(1± e1) e ˙(j+4)

] [
1

2
(1± e1) e ˙(k+4)

]
, (3.26)

i, j, k ∈ {1, 2, 3} . (3.27)



Nonasso
iative quantum theory on o
too
tonion algebra 53.3 Relativisti
 spin operatorThe relativisti
 spin operator from [5℄ 
an be obtained from 
hoosing the de
omposition of non-relativisti
 spin operator (3.26) with minus sign �−�, then allowing the indi
es to run {0, 1, 2, 3}(instead of {1, 2, 3}), and 
hoosing the opposite sign �+� for the R0 element, i.e.:
iµ 7−→ eµ̇ for µ ∈ {1, . . . , 7} , (3.28)
i0 7−→ e1. (3.29)

R0 =
i4
2

(1 + i0) 7−→
e4̇
2

(1 + e1) , (3.30)
Rj =

i(j+4)

2
(1− i0) 7−→

e ˙(j+4)

2
(1− e1) for j ∈ {1, 2, 3} . (3.31)Whereas equation (3.31) forms a nonasso
iative de
omposition of the nonrelativisti
 spinoperator, the new zero-
omponent (3.30) is now understood as the relativisti
 generalization ofthe spin operator Mµν , namely:

Mµν =
1

2




0 e1̇ e2̇ e3̇
−e1̇ 0 e1e3̇ −e1e2̇
−e2̇ −e1e3̇ 0 e1e1̇
−e3̇ e1e2̇ −e1e1̇ 0


 . (3.32)This satis�es the relations from [4℄ (for details, see the referen
e in [5℄):

[Rµ, Rν ] = 2Mµν , (3.33)
[Mµν ,Mρσ ] = i0 (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (3.34)

7−→ e1 (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) , (3.35)
(Rµ, Rν , Rρ) = (RµRν)Rρ −Rµ (RνRρ) (3.36)

= 2εµνρσRσ. (3.37)4 Dira
 equation on nonasso
iative algebra4.1 Pauli matri
esThe Paul matri
es are:
σ0 ≡ 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
,(4.1)

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 −1
−1 0

)
, σ2 =

(
0 ı
−ı 0

)
, σ3 =

(
−1 0
0 1

)
.(4.2)Commutator relations between the σj (j, k, l ∈ {1, 2, 3} ) are:

σjσk = ıǫjklσl + δjkσ0, (4.3)
(
σj

)2
≡ σjσj = σ0. (4.4)The σ0 and σ0 are now mapped to the real axis (e0e0̇), and the σj to a pair of basis elements

emeṅ or eneṁ where m ∈ {1, . . . , 7} is a �xed number, and n ∈ {i, j, k} where eiej = ek (and
{i, j, k} ordered, and i 6= j 6= k 6= i). Spe
i�
ally:

ı 7→ em, (4.5)
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σ0 7→ e0e0̇ ≡ 1, σ1 7→ emej̇ , σ2 7→ emek̇, σ3 7→ emel̇. (4.6)For example:
σ1σ2 7→ emej̇emek̇ = −e0el̇ = (emem) el̇ = em

(
emel̇

)
7→ ıσ3, (4.7)and so on.4.2 Dira
 matri
esThe Dira
 matri
es γµ and unit matrix I have the relation:

{γµ, γν} = γµγν + γνγµ = ηµνI. (4.8)They 
an e.g. be written with Pauli matri
es as:
γ0 := 
hoi
e of 




(
σ0 0
0 −σ0

)

︸ ︷︷ ︸Dira
 basis ,

(
0 σ0

σ0 0

)

︸ ︷︷ ︸Weyl basis 


, (4.9)

γj :=

(
0 σi

−σi 0

)
. (4.10)Many other representations are possible.Using a �xed number m ∈ {1, . . . , 7} and four distin
t indi
es j, k, l, n ∈ {1, . . . , 7}, thede�ning relation for Dira
 matri
es (4.8) 
an be satis�ed with:

γ0 7→ ejeṁ, γ1 7→ ek, γ2 7→ el, γ3 7→ en. (4.11)Whereas all 
hoi
es for the Pauli matri
es above (se
tion 4.1) were algebrai
ally equivalent,this is not the 
ase anymore for the possible 
hoi
es for the Dira
 matri
es. There are twoalgebrai
ally di�erent 
hoi
es for a quadruplet {j, k, l, n}:1. The quadruplet {j, k, l, n} 
onsists of mutually nonasso
iative basis elements; e.g. {e4, e5, e6, e7};or2. the set {j, k, l, n} 
ontains one asso
iative three-
y
le (e.g. {e1, e2, e3}).4.3 A note on Dira
 matri
es and nonasso
iativityThe de�ning relation for Dira
 matri
es (equation 4.8 above) 
an be expressed in o
tonioni
algebras, sin
e an o
tonion basis 
ontains 7 mutually anti
ommutative basis elements; however,it is not possible to 
hose 4 independent basis elements that are also asso
iative, be
ause onlyasso
iative triplets exist. Therefore, any o
tonioni
 representation of the Dira
 matri
es mustin
lude nonasso
iative parts that are not present in 
urrent textbook formulations in physi
s.One spe
ulation is that dropping the nonasso
iative parts of formulations today restri
ts phys-i
al 
al
ulations to one or two for
es (e.g. ele
troweak intera
tion), but introdu
e problemati
divergen
es when trying to merge more for
es (e.g. strong for
e problems when trying pertur-bation theory with a 
oupling 
onstant of order 1; or uni�
ation of ele
tromagnetism, weak, orstrong for
e with gravity). It is spe
ulated that by keeping the nonasso
iative parts, one 
anunify more for
es, with fewer problems. A nonperturbative des
ription of the strong for
e 
ouldbe possible, and unobservability of individual quarks results from nonasso
iative unobservableoperators (see e.g. [10℄).



Nonasso
iative quantum theory on o
too
tonion algebra 74.4 Dira
 equation with ele
tromagneti
 �eldThe Dira
 matri
es 
an be 
hosen:
γ0 7→ −e1e1̇, γ1 7→ e7̇, γ2 7→ −e6̇, γ3 7→ e5̇. (4.12)Using the ele
tromagneti
 �eld Aµ =

(
A0, ~A

), 
harge q, and writing the four dimensional 
om-plex wave fun
tion Ψ into real parts ψr
µ and imaginary parts ψi

µ, the Dira
 equation with ele
-tromagneti
 �eld (from [2℄ equation 6) 
an be expressed in o
too
tonions:
(∇−m) Ψ = 0, (4.13)

∇ 7→ e1̇∂0 + e1e1̇qA0 (4.14)
−e1e7̇∂1 + e7̇qA1

+e1e6̇∂2 − e6̇qA2

−e1e5̇∂3 + e5̇qA3

= [e1̇ (∂0 + e1qA0)] (4.15)
+e1 [−e7̇ (∂1 + e1qA2) + e6̇ (∂2 + e1qA2)− e5̇ (∂3 + e1qA3)] ,

m 7→ m ≡ e0e0̇m, (4.16)
Ψ 7→ ψr

0 + e1̇ψ
i
0 + e2̇ψ

r
1 + e3̇ψ

i
1 (4.17)

+e1e4̇ψ
r
2 − e1e5̇ψ

i
2 − e1e6̇ψ

r
3 − e1e7̇ψ

i
3

=
(
ψr

0 + e1̇ψ
i
0 + e2̇ψ

r
1 + e3̇ψ

i
1

) (4.18)
+e1

(
e4̇ψ

r
2 − e5̇ψ

i
2 − e6̇ψ

r
3 − e7̇ψ

i
3

)
.4.5 Dira
 equation with ele
tromagneti
 and gravitational �eldPer [2℄ the generalization of equations (4.15) and (4.18) above, using a real number α, is:

∇ 7→ [e1̇ (∂0 + e1qA0)] (4.19)
+ exp (αe1) [−e7̇ (∂1 + e1qA1) + e6̇ (∂2 + e1qA2)− e5̇ (∂3 + e1qA3)] ,

Ψ 7→
(
ψr

0 + e1̇ψ
i
0 + e2̇ψ

r
1 + e3̇ψ

i
1

) (4.20)
+ exp (αe1)

(
e4̇ψ

r
2 − e5̇ψ

i
2 − e6̇ψ

r
3 − e7̇ψ

i
3

)
.The Dira
 matri
es 
orresponding to a hypotheti
al, purely gravitational intera
tion α = 0 thensimply are:

γ0
gr 7→ −e1̇, γ1 7→ e7̇, γ2 7→ −e6̇, γ3 7→ e5̇. (4.21)5 Dimensional redu
tion program (DRP)The �eld-free Dira
 equation used in the dimensional redu
tion program [7℄ (now short: DRP)demonstrates three apparent fermion generations, ea
h 
onsisting of one massless spin 1/2 parti
lewith only one heli
ity, and one massive spin 1/2 parti
le. It has the form:

P̃ψ = 0, (5.1)
γ0γµp

µψ = 0, with µ ∈ {0, 1, . . . , 9} , and (5.2)
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γ0γµ =

(
−σ̃µ 0

0 σµ

)
, (5.3)using generalized Paul matri
es:

σ0 :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2...8 :=

(
0 −q
q 0

)
, σ9 :=

(
1 0
0 −1

)
,(5.4)

σ̃2...8 :=

(
0 q
−q 0

)
, (5.5)The q ∈ {e1, . . . , e7} are nonreal o
tonion basis elements.Compared to the traditional Dira
 equation, the imaginary basis element ı is generalized tothe 7 o
tonion basis elements. When sele
ting a preferred basis element, e.g. e4, the DRP takesadvantage of the remaining asso
iative 3-
y
le {e1, e2, e3} for eigenvalue λ± 
al
ulation of (5.1):

λ± =
1

2
, (5.6)

ψ+ =

(
A
kD

)
, ψ+ =

(
kB
C

)
. (5.7)Here, k ∈ {e1, e2, e3}, and A,B,C,D any real number. This is in 
ontrast to the traditionalDira
 equation, where no 
hoi
e of k is possible, and therefore B and D both must be zero. Inthe DRP [7℄, the three 
hoi
es of k are interpreted as three generations of fermions with ele
trons

e↑ =

(
1
k

)
, e↓ =

(
−k
1

)
, (5.8)neutrinos (massless) moving in z-dire
tion, with a single heli
ity state

νz =

(
0
k

)
, ν−z =

(
k
0

)
, (5.9)and a new, single 
omplex massless spin-12 parti
le, with the opposite heli
ityØz =

(
0
1

)
. (5.10)5.1 DRP in o
too
tonionsThe 
lassi
al Dira
 matri
es have been modeled above in o
too
tonions (equation 4.11) as:

γ0 7→ ejeṁ, γ1 7→ ek, γ2 7→ el, γ3 7→ en. (5.11)In order to generalize the imaginary basis element of γ2, as done in the DRP (equation 5.4), theDira
 equation must be modi�ed to be
ome of the form:
γ0 7→ ej , γ1 7→ ek, γ2 7→ eleṁ, γ3 7→ en. (5.12)This 
ould only be a
hieved by Wi
k-rotating the time axis x0 7→ eṁ [x0] and also the y axis

x2 7→ eṁ [x2]. Then, the o
tonioni
 generalization of γ2 would be the 
hoi
e of eṁ.



Nonasso
iative quantum theory on o
too
tonion algebra 9In this formulation, the algebrai
 generators eṁ in the equation of motion (the Dira
 equation)would be the same as the generators of the Wi
k rotation of the time and one spa
ial axis, also
eṁ. This would 
ouple the algebrai
 generators of a nonasso
iative ba
kground to physi
alparameters, whi
h is problemati
 when attempting to insert a physi
al �eld: Modeling dynami
intera
tion would likely be
ome ambiguous.One 
ould expe
t that if the DRP is key to des
ribing fermion generations on o
tonioni
ba
kground, then o
too
tonions as proposed here will not be su

essful for the des
ription ofnature. Conversely, if o
too
tonions are key to nonasso
iative quantum theory, then the DRPneeds to be modi�ed.5.2 A proposed generalized DRPThe argument for a proposed generalized dimensional redu
tion program, to model fermiongenerations on o
too
tonions, is as follows:
• It may be understood as a spe
ial 
ase, to pi
k the 
lassi
al γ2 and expand its asso
iatedimaginary basis element to o
tonions, as done in the DRP of [7℄. A generalization allowsany of the 
lassi
al γ matri
es to be expanded, in a way that allows for a quaternioni
degree of freedom after sele
ting a preferred nonasso
iative basis element.
• Applying su
h a generalization to γ0 pairs the Dira
 matri
es from four dimensional Eu-
lidean Quantum Gravity (4D EQG; equation 4.21) with the 
lassi
al Dira
 matri
es forele
tromagnetism (equation 4.12).
• From this formulation, there is no preferen
e about whi
h relation is fundamental: The 4DEQG equation of motion, or the 
lassi
al Dira
 equation on Minkowskian spa
etime.
• Sin
e the 4D EQG equation of motion allows a generalized DRP to be applied to any of its
γµ, it will now be assumed to be fundamental (as opposed to the 
lassi
al point of view,whi
h has Minkowskian spa
etime as preferred, fundamental geometry of the �eld-freeva
uum).

• Su
h a formulation may, at least in prin
iple, be wide enough to in
lude the symmetries ofthe Standard Model, and is therefore 
on
luded to be of interested for the des
ription ofnature.A preliminary look at
γ0 7→ ejeµ̇, γ1 7→ ek, γ2 7→ eleν̇ , γ3 7→ en, (5.13)with µ, ν ∈ {0, . . . , 7} yields the 4D EQG equation of motion for {µ = ν = 0}, the 
lassi
al Dira
equation for {µ 6= 0, ν = 0}, and a generalized DRP on four dimensional Eu
lidean ba
kgroundfor {µ = 0, ν 6= 0}.In the 
ase {µ 6= 0, ν 6= 0, µ 6= ν}, there will always be two asso
iative 3-
y
les {er, es, et}su
h that any two basis elements in {eµ, eν , er, es, et} anti-
ommute, and therefore reprodu
ethe required eigenvalue / eigenfun
tion 
ombinations from equation (5.7) above. It is thereforestill possible to des
ribe three fermion generations as in [7℄, from a slightly generalized DRP ono
too
tonions.



10 J. Köplinger5.3 Supplying ele
tromagneti
 and gravitational �eldsOn a ba
kground
γ0 7→ ej , γ1 7→ ek, γ2 7→ el, γ3 7→ en, (5.14)with {j, k, l} an asso
iative 3-
y
le, the generalized DRP on o
too
tonions allows for fa
tors
{
E0, E1, E2, E3

}
, (5.15)ea
h of whi
h may be a linear 
ombination of terms to basis elements {1, eµ̇, eν̇ , eρ̇, eσ̇} (in themost general 
ase), where the {eµ̇, eν̇ , eρ̇, eσ̇} form a nonasso
iative o
tonioni
 quadruplet. Theremaining 3 basis elements with dotted index, that are not 
ontained in this quadruplet, mustne
essarily be an asso
iative 3-
y
le, and therefore allow the eigenvalue 
al
ulation as in (5.7).The generalized Dira
 equation is then:

(∇−m) Ψ = 0, (5.16)
∇ =

3∑

i=0

γiEi. (5.17)Mass m is positive and real. The wave fun
tion Ψ is a general o
too
tonion.In this notation, the 
lassi
al Dira
 equation of a 
harge q with ele
tromagneti
 �eld Aµemerges from:
E0

EM := e4̇ (∂0 + e4̇qA0) , (5.18)
E1 := ∂1 + e4̇qA1, (5.19)
E2 := ∂2 + e4̇qA2, (5.20)
E3 := ∂3 + e4̇qA3. (5.21)Here, e4̇ is an arbitrary 
hoi
e of o
tonion basis element, out of a nonasso
iative quadruplet

{e4̇, e5̇, e6̇, e7̇}. It applies the generalized DRP to the γ0 
omponent of the equation of motion.4D EQG would then be des
ribed as [2℄:
E0

GR := ∂0 + e4̇qA0, (5.22)This allows for a simple, one-parameter uni�
ation of EEM and EGR through a real mixing angle
α as:

E0
GR,EM := exp (αe4̇) (∂0 + e4̇qA0) , (5.23)5.4 Algebrai
 
hoi
esSo far it has been shown that previously proposed equations of motion of a spin 1/2 parti
le inele
tromagneti
 and gravitational �elds [2℄ 
an be rewritten using o
too
tonion algebra, whi
halso allows for a generalized DRP after [7℄ that proposes to model fermion generations. Thisse
tion will examine the algebrai
 
hoi
es and remaining freedoms, to �nd whether su
h anapproa
h would be wide enough to model the symmetries of the Standard Model (namely, SU (2)�avor and SU (3) 
olor symmetry).
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tonion algebra 11The �eld-free equation of motion,
(∇−m) Ψ = 0, (5.24)

∇ =
3∑

i=0

γiEi, (5.25)modeled gamma matri
es to o
tonion basis elements
γ0 7→ ej , γ1 7→ ek, γ2 7→ el, γ3 7→ en, (5.26)where {ej , ek, el} is an asso
iative 3-
y
le. This a �rst algebrai
 
hoi
e, be
ause the gammamatri
es 
ould just as well be mapped to a nonasso
iative 4-tuple (as dis
ussed in se
tion 4.2above). Without �eld, the Ei are 
hosen as linear derivatives, ∂i:
Ei

free := ∂i with i ∈ {0, 1, 2, 3} . (5.27)So far, no dotted o
tonion basis element (other than the unit element e0̇) has been used.A �eld was then introdu
ed after 
hoosing an arbitrary nonreal o
tonion basis element fromthe dotted indi
es, e4̇, and the equation of motion is required to remain invariant when rotatingthe wave fun
tion Ψ along e4̇, i.e., under U(1) symmetry with respe
t to a preferred o
tonionelement:
Ψ 7−→ exp (e4̇qφ) Ψ′ (5.28)where the real number q is a 
harge, and ∂φ/∂i = Ai a four-potential.The invariant equation of motion then be
omes:
Ei

U(1) := ∂i + e4̇qAi. (5.29)In 
omparison, the 
lassi
al Dira
 equation with ele
tromagneti
 �eld is exa
tly:
E0

EM := e4̇ (∂0 + e4̇qA0) = e4̇E
0
U(1), (5.30)

Ej
EM := Ej

U(1) with j ∈ {1, 2, 3} . (5.31)The same preferred o
tonion basis element e4̇ that was used for modeling U(1) invarian
e, isalso applied to the E0 
omponent only. This was interpreted as generalized DRP, applied on the
γ0 �time� 
omponent.The algebrai
 
hoi
es so far 
an be summarized:1. �Lands
ape 
hoi
e�: The gamma matri
es are modeled by four o
tonion basis elements

{ej , ek, el, en} that 
ontain an asso
iative 3-
y
le {ej , ek, el} and a single nonasso
iativebasis element en. This 
hoi
e is algebrai
ally distin
t from 
hoosing a nonasso
iative 4-tuple. It is also physi
ally di�erent from 
hoosing more (or fewer?) than four gammamatri
es.2. �U(1) 
hoi
e�: The basis element e4̇ is 
hosen as the preferred basis element, to require
U(1) invarian
e of the equation of motion. This results in the 4D EQG equation of motionwith �eld.3. �GR-EM 
hoi
e�: Appli
ation of the generalized dimensional redu
tion program (DRP) onthe time 
omponent (γ0), using the same preferred basis o
tonion e4̇ as was 
hosen for
U(1) invarian
e, results in the 
lassi
al Dira
 equation with ele
tromagneti
 �eld.



12 J. Köplinger5.5 Remaining freedoms (�symmetries�)Algebrai
 
hoi
es 
orrespond to remaining degrees of freedom, that take advantage of the symme-tries of the formulation. Any symmetry within the o
tonions is available for exploit, to requireinvarian
e of the equation of motion. In o
too
tonions, the dotted and undotted indi
es aremostly algebrai
ally separate, they only mix at the real axis, e2µ = e2µ̇ = −e0e0̇ ≡ −1. Therefore,the symmetries between di�erent 
hoi
es of dotted and undotted nonreal o
tonion basis elementsea
h is des
ribed by G2, the smallest ex
eptional Lie group.The following symmetries govern o
tonion algebra in general (see e.g. [11℄):
• Transformation between the seven nonreal basis elements of an o
tonion, G2,
• transformation between six o
tonion basis elements, that leaves one preferred basis elementun
hanged, SU (3),
• rotation within an asso
iative 3-
y
le {ej , ek, el}, whi
h leaves the remaining nonasso
iative4-tuple invariant, SU (2), and
• one-parameter rotation in the spa
e of one o
tonion basis {ej}, U(1).The 
orresponding freedoms, or symmetries of the formulation, then are:1. �Lands
ape freedom�: The gamma matri
es are modeled through undotted o
tonion in-di
es. Be
ause any o
tonion basis element 
ould be 
hanged, the symmetries between thedi�erent 
hoi
es are des
ribed by G2. This in
ludes simple one-element rotation U(1), rota-tion within an asso
iative 3-
y
le SU (2), and rotation between six o
tonion basis elementsthat leave a preferred seventh basis element un
hanged SU (3).2. �Preferred basis freedom�: The preferred basis element e4̇ was 
hosen for requiring U(1)invarian
e for ele
tromagnetism and gravitation, and also for the generalized DRP on γ0to mix these two for
es. Then the 
hoi
es for the remaining six dotted o
tonion basiselements is then des
ribed by SU (3) symmetry in general. Requiring the equation ofmotion to be invariant under su
h SU (3) symmetry would have a nontrivial impa
t on the
Ai four potential, whi
h is modeled on dotted indi
es as well.3. �DRP 
hoi
e (spa
ial)�: The generalized DRP 
an be applied on any of the E1, E2, and
E3 
omponents, using a 
ombination of dotted indi
es from a 
hosen nonasso
iative 4-tuple {e4̇, e5̇, e6̇, e7̇}. This would leave a freedom within the preferred asso
iative 3-
y
le
{e1̇, e2̇, e3̇} with its SU(2) symmetry, for modeling fermion generations. This also wouldhave a dire
t, nontrivial e�e
t on the existing Ai potential.5.6 Preliminary summaryTable 1 shows a s
hemati
 overview of the remaining freedoms of the formulation, after sele
ting

{e1, e2, e3} as the asso
iative 3-
y
le that model γi, {e1̇, e2̇, e3̇} the 3-
y
le to model fermiongenerations after [7℄, and e7 and e7̇ as the preferred o
tonion basis for mixing ele
tromagnetism(EM) and gravitation (GR). There is:
• In the γi, a SU (2) invarian
e when rotating the 
hosen asso
iative 3-
y
le,
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hemati
 overview of remaining freedoms (�symmetries�) and spe
ulative for
e assignment,after a 
hosen o
tonion basis sele
tion for the γi and Ei.O
tonion index: 1 2 3 4 5 6 7
γi: γ1 γ2 γ3 γ0

Ei: E1 E2 E3 E0Symmetry: SU(2) U (1)
SU (3) U (1)

G2For
e: weak? EM, GRstrong? EM, GR
• in the γi, a SU (3) invarian
e when keeping the preferred o
tonion basis element �xed andvarying all others,
• in the Ei, a SU (2) invarian
e in the asso
iative 3-
y
le that is proposed to model fermiongenerations, and
• in the Ei, a SU (3) invarian
e when keeping the preferred o
tonion basis from ele
tromag-netism and gravitation �xed and rotating all others.6 Notes6.1 Expe
tation values from nonasso
iative ba
kgroundIn 
lassi
al quantum me
hani
s, the expression for obtaining expe
tation values of an operator

∇ on a system modeled by wave fun
tions Ψ is:
〈Ψ|∇ |Ψ〉 (6.1)On o
tonions, however, this expression be
omes ambiguous due to their nonasso
iativity, asnonasso
iative parts of the operator result in unobservables [10, 3℄. Satisfying only a Dira
equation of the form (∇−m)Ψ = 0 therefore 
annot answer the question regarding generalobservation out
omes. For 
omparison, the Dira
 equation with ele
tromagneti
 �eld was mod-eled in [13℄ on split-o
tonions, using expressions with three o
tonion basis elements, and thenasso
iating �eld and wave fun
tion di�erently as 
ompared to spa
e and time derivatives. Whilethis formulation 
annot be brought into the form (∇−m) Ψ = 0, it 
ould well be spe
ulatedthat the di�eren
e in formulation relates to the question for �nding general solutions.There are distin
t 
ases where the o
tonioni
 expression 
an be redu
ed to asso
iative matrixformulations, namely, for ele
tromagnetism and gravity. When 
al
ulating mixing e�e
ts betweenfor
es on nonasso
iative ba
kground, or between fermion generations modeled by the DRP, thequestion remains how the proposed di�erential equations 
an a
tually be solved. This question isindependent from symmetries that leave the formulation itself invariant (whi
h 
an be answeredon the algebra level).



14 J. Köplinger6.2 A note on the lands
ape 
hoi
eAfter restri
ting the algebra to o
too
tonions, the fundamental algebrai
 
hoi
e was made, touse four γi as generators of the ba
kground, and four Ei to generate motion and dynami
s. Also,the γi were 
hosen to 
ontain an asso
iative 3-
y
le, whereas the Ei 
onsist of a nonasso
iative4-tuple. The formulation was tied to earlier des
riptions of ele
tromagnetism and gravity, aswell as, a proposal for modeling fermion generations. The remaining algebrai
 freedoms thenexposed the desired symmetries, to spe
ulate that the general formulation may be wide enoughfor modeling all for
es of the Standard Model.This lands
ape 
hoi
e is motivated by its potential ability to des
ribe nature, i.e., be
ause it�may work�. However, ex
lusion of other possible lands
apes has not been examined yet: Whatdynami
 behavior would emerge when the γi would instead be 
hosen from a nonasso
iative4-tuple? What if the Ei 
ontain an asso
iative 3-
y
le? What if not four, but a di�erent numberof γi or Ei are used?These open questions need to be addressed, to spe
ify the motivation for looking at o
too
-tonion algebra more 
learly. If one wants to understand how exa
tly the physi
al prin
iples oftoday's des
riptions of nature emerge from nonasso
iative quantum theory, it must be 
lari�edbetter what the driving prin
iples are to pre
ede su
h emergen
e.6.3 Ma
hian approa
h to the hierar
hy problemAn interpretation of Ma
h's prin
iple was o�ered in [8℄, to redu
e Plan
k's s
ale to the ele
-troweak s
ale, by assuming a non-lo
al Ma
hian response of the universe in lo
al experiments. Itrequired for the gravitational �ux of a body to be distributed over all matter inside the horizon.Gravitation in this paper is modeled on four dimensional Eu
lidean ba
kground, i.e., to a metri
:
ds2 = dt2 + |d~x|2 . (6.2)Following the argument from [12℄ that positive de�niteness of the norm relates to physi
al observ-ables, the model here would allow for a spe
ulated purely gravitational pro
ess to happen outsidethe light 
one. It 
ould span the entire universe d~x with no observer time dt passing, yet beallowable sin
e Eu
lidean norm is always positive de�nite. It 
ould therefore model the requiredstrong non-lo
al feedba
k of all matter in the universe, to e�e
tively weaken the gravitationalfor
e lo
ally in the referen
ed Ma
hian approa
h.7 Summary and outlookIn this paper, o
too
tonion algebra was used to expressed sele
t re
ent �ndings towards a quan-tum theory on nonasso
iative algebra, in harmonized notation. This in
luded a nonasso
iativede
omposition of the spin operator, the Dira
 equation with �elds for ele
tromagnetism and fourdimensional Eu
lidean quantum gravity, and a generalized dimensional redu
tion program formodeling fermion generations. Algebrai
 
hoi
es and remaining freedoms (�symmetries�) wereexamined, and found to expose the desired properties to justify 
onsideration for modeling thefor
es of the Standard Model.Further examination will in
lude ways to supply weak or strong �elds, how to unambiguouslypredi
t expe
tation values from quantum theory on nonasso
iative ba
kground, 
larifying thephysi
al prin
iples that may drive a parti
ular lands
ape sele
tion on o
too
tonion ba
kground,
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tonion algebra 15and generally understanding the origin of the hierar
hy between Plan
k s
ale and ele
troweaks
ale.A
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