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2 J. Köplingerquantum gravity used in this paper satis�es, at least in priniple, an earlier solution [8℄ of thehierarhy problem, that requires a nonloal Mahian response to all matter within the horizonof a loal experiment, explaining the weakness of gravity as ompared to the eletroweak sale.It is onluded that further examination of the desription in this paper will give a goodunderstanding of appliability for otootonion modelling of fores of nature, and possibly givefurther insight into the meaning of quantum theory on nonassoiative bakground in general.2 OtootonionsOtootonions, O⊗O, are otonions with otonion oe�ients. An otonion basis is
bO := {e0, e1, e2, . . . , e7} , (2.1)with e0 ≡ 1 the identity element under multipliation, and {e1, e2, . . . , e7} the antiommutative,nonreal otonion basis elements. Multipliation between the otonion basis elements eµ is de�nedas:
eµeν = ǫµνρeρ − δµν , (2.2)
ǫµνρ = +1 for µνρ ∈ {123, 145, 176, 246, 257, 347, 365} . (2.3)Here, the {eµ, eν , eρ} form assoiative 3-yles.An otootonion A an then be written as:
A :=

7∑

µ=0

~aµeµ. (2.4)The ~aµ are also otonions eah. This an be expressed to real number oe�ients aµν̇ as:
A :=

7∑

µ=0

7∑

ν̇=0

aµν̇eµeν̇ . (2.5)The index ν̇ is written with a dot, to indiate that its assoiated otonion basis eν̇ is separatefrom the otonion basis with undotted indies. Instead, the otonion basis element with dottedindex is hosen to represent the otonion basis of the oe�ient:
~aµ :=

7∑

ν̇=0

aµν̇eν̇ . (2.6)Otonion basis elements with dotted indies ommute, assoiate, and distribute with basiselements with undotted indies, i.e.:
eν̇eµ = eµeν̇ , (2.7)

eν̇ (eµeρ) = (eν̇eµ) eρ, (2.8)and so on. The otootonion basis elements an be abbreviated as:
bO⊗O := {e0, e1, e2, . . . , e7} ⊗ {e0̇, e1̇, e2̇, . . . , e7̇} (2.9)

= {eµeν̇} where µ, ν ∈ {0, 1, . . . , 7} . (2.10)



Nonassoiative quantum theory on otootonion algebra 3Here, the real axis orresponds to e0e0̇.Eah otootonion is expressed as a pair of basis elements, one dotted and one undotted. Ifonly one otootonion basis element is written, the other is inferred, i.e.:
eµ ≡ eµe0̇, (2.11)
eµ̇ ≡ eµ̇e0. (2.12)3 Nonassoiative deomposition of the spin operator3.1 Chirality of (split-)otonionsMultipliation in otonion and split-otonion algebra is generally nonassoiative, but governedby seven assoiative triplets {ql, qm, qn}. Together with antiommutation rules, the hoie oftriplets �xes the multipliation table of the (split-)otonion. The assoiative triplets in [4℄ are:

qlqm = qn, (3.1)where lmn ∈ {123, 156, 174, 264, 275, 345, 376} . (3.2)The assoiative 3-yles of the otonion basis used in this paper (equation 2.3 above) orre-sponds to assoiative triplets of a hosen split-otonion subalgebra in the otootonions, e.g.:
bsplit−O := {e0e0̇, e0e1̇, e0e2̇, e0e3̇, e1e4̇, e1e5̇, e1e6̇, e1e7̇} (3.3)

≡ {1, e1̇, e2̇, e3̇, e1e4̇, e1e5̇, e1e6̇, e1e7̇} , (3.4)
alam = an for all al, am, an ∈ bsplit−O when (3.5)
lmn ∈ {123, 145, 176, 246, 257, 347, 365} . (3.6)When mapping split-otonion basis elements from [4℄ to the notation here,

al ←→ qm, (3.7)there must neessarily be at least one assoiative triplet with the opposite sign. The reaons forthis an be understood as the two multipliation tables having opposite hirality1.The following mapping is now hosen:
{1, q1, q2, q3, q4, q5, q6, q7} 7−→ {1, e1̇, e2̇, e3̇, e1e5̇, e1e6̇, e1e7̇, e1e4̇} , (3.8){

123, 156, 174, 264, 275, 345, 376
}
7−→

{
123, 145, 176, 246, 257, 347, 365

}
, (3.9)

ı 7−→ e1e0̇ ≡ e1. (3.10)In this notation, equation (3.8) expresses the mapping of basis elements, and equation (3.9)indiates the assoiative triplet that is hanged into the opposite hirality (i.e., from left-handedto right-handed, or vie versa). Equation (3.10) maps the omplex basis ı onto e1e0̇, whih isitself not part of the split-otonion basis, but satis�es the algebrai relations of the split-otonionswhen paired with a dotted otonion basis element.As a result of the hirality hange, produts involving both basis elements q4, q5 will be mappedinto the opposite sign, as ompared to the individual basis elements, i.e.:
uq3 7−→

{
ue3̇ if u /∈ {q4,q5} ,
−ue3̇ otherwise, (3.11)1A similar onept is alled left-/right-otonions here [9℄.
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uq4 7−→

{
u (e1e5̇) if u /∈ {q3,q5} ,
−u (e1e5̇) otherwise, (3.12)

uq5 7−→

{
u (e1e6̇) if u /∈ {q3,q4} ,
−u (e1e6̇) otherwise. (3.13)All other basis element produts are mapped without suh a hange.3.2 Nonrelativisti spin operatorIn the notation of this paper, the nonrelativisti spin operators from [4℄ beome:

ŝi =
ı

2
qi = −

ı

4
ǫijkq(j+3)q(k+3), (3.14)
i, j, k ∈ {1, 2, 3} . (3.15)

ŝ1 =
ı

2
q1 =

ı

4
(q6q5 − q5q6) 7−→

e1
4

(e1e7̇e1e6̇ − e1e6̇e1e7̇) (3.16)
= −

e1
4

(e7̇e6̇ − e6̇e7̇) , (3.17)
ŝ2 =

ı

2
q2 =

ı

4
(q4q6 − q6q4) 7−→

e1
4

(e1e5̇e1e7̇ − e1e7̇e1e5̇) (3.18)
= −

e1
4

(e5̇e7̇ − e7̇e5̇) , (3.19)
ŝ3 =

ı

2
q3 =

ı

4
(q5q4 − q4q5)

(*)
7−→

e1
4

(e1e6̇e1e5̇ − e1e5̇e1e6̇) (3.20)
= −

e1
4

(e6̇e5̇ − e5̇e6̇) . (3.21)The last mapping is marked with (*), to indiate the hirality hange of the spin operator, asthe right side would otherwise orrespond to −ŝ3 (rather than ŝ3).In abbreviated form,
ŝi =

e1
4
ǫijke ˙(j+4)

e ˙(k+4)
, (3.22)

i, j, k ∈ {1, 2, 3} , (3.23)the spin operator is deomposed into otonion basis elements with [
e ˙(j+4)

]2
=

[
e ˙(k+4)

]2
= −1.This ould also be written using split-otonion basis elements, i.e.:

ŝi = −
e1
4
ǫijk

[
e1e ˙(j+4)

] [
e1e ˙(k+4)

]
, (3.24)sine the e21 = −1 anel eah other out.A fator 1± e1 yields another valid deomposition of (3.22) with:

(1± e1)
2 = ±2e1, (3.25)
ŝi = ±

1

4
ǫijk

[
1

2
(1± e1) e ˙(j+4)

] [
1

2
(1± e1) e ˙(k+4)

]
, (3.26)

i, j, k ∈ {1, 2, 3} . (3.27)



Nonassoiative quantum theory on otootonion algebra 53.3 Relativisti spin operatorThe relativisti spin operator from [5℄ an be obtained from hoosing the deomposition of non-relativisti spin operator (3.26) with minus sign �−�, then allowing the indies to run {0, 1, 2, 3}(instead of {1, 2, 3}), and hoosing the opposite sign �+� for the R0 element, i.e.:
iµ 7−→ eµ̇ for µ ∈ {1, . . . , 7} , (3.28)
i0 7−→ e1. (3.29)

R0 =
i4
2

(1 + i0) 7−→
e4̇
2

(1 + e1) , (3.30)
Rj =

i(j+4)

2
(1− i0) 7−→

e ˙(j+4)

2
(1− e1) for j ∈ {1, 2, 3} . (3.31)Whereas equation (3.31) forms a nonassoiative deomposition of the nonrelativisti spinoperator, the new zero-omponent (3.30) is now understood as the relativisti generalization ofthe spin operator Mµν , namely:

Mµν =
1

2




0 e1̇ e2̇ e3̇
−e1̇ 0 e1e3̇ −e1e2̇
−e2̇ −e1e3̇ 0 e1e1̇
−e3̇ e1e2̇ −e1e1̇ 0


 . (3.32)This satis�es the relations from [4℄ (for details, see the referene in [5℄):

[Rµ, Rν ] = 2Mµν , (3.33)
[Mµν ,Mρσ ] = i0 (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (3.34)

7−→ e1 (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) , (3.35)
(Rµ, Rν , Rρ) = (RµRν)Rρ −Rµ (RνRρ) (3.36)

= 2εµνρσRσ. (3.37)4 Dira equation on nonassoiative algebra4.1 Pauli matriesThe Paul matries are:
σ0 ≡ 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
,(4.1)

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 −1
−1 0

)
, σ2 =

(
0 ı
−ı 0

)
, σ3 =

(
−1 0
0 1

)
.(4.2)Commutator relations between the σj (j, k, l ∈ {1, 2, 3} ) are:

σjσk = ıǫjklσl + δjkσ0, (4.3)
(
σj

)2
≡ σjσj = σ0. (4.4)The σ0 and σ0 are now mapped to the real axis (e0e0̇), and the σj to a pair of basis elements

emeṅ or eneṁ where m ∈ {1, . . . , 7} is a �xed number, and n ∈ {i, j, k} where eiej = ek (and
{i, j, k} ordered, and i 6= j 6= k 6= i). Spei�ally:

ı 7→ em, (4.5)
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σ0 7→ e0e0̇ ≡ 1, σ1 7→ emej̇ , σ2 7→ emek̇, σ3 7→ emel̇. (4.6)For example:
σ1σ2 7→ emej̇emek̇ = −e0el̇ = (emem) el̇ = em

(
emel̇

)
7→ ıσ3, (4.7)and so on.4.2 Dira matriesThe Dira matries γµ and unit matrix I have the relation:

{γµ, γν} = γµγν + γνγµ = ηµνI. (4.8)They an e.g. be written with Pauli matries as:
γ0 := hoie of 




(
σ0 0
0 −σ0

)

︸ ︷︷ ︸Dira basis ,

(
0 σ0

σ0 0

)

︸ ︷︷ ︸Weyl basis 


, (4.9)

γj :=

(
0 σi

−σi 0

)
. (4.10)Many other representations are possible.Using a �xed number m ∈ {1, . . . , 7} and four distint indies j, k, l, n ∈ {1, . . . , 7}, thede�ning relation for Dira matries (4.8) an be satis�ed with:

γ0 7→ ejeṁ, γ1 7→ ek, γ2 7→ el, γ3 7→ en. (4.11)Whereas all hoies for the Pauli matries above (setion 4.1) were algebraially equivalent,this is not the ase anymore for the possible hoies for the Dira matries. There are twoalgebraially di�erent hoies for a quadruplet {j, k, l, n}:1. The quadruplet {j, k, l, n} onsists of mutually nonassoiative basis elements; e.g. {e4, e5, e6, e7};or2. the set {j, k, l, n} ontains one assoiative three-yle (e.g. {e1, e2, e3}).4.3 A note on Dira matries and nonassoiativityThe de�ning relation for Dira matries (equation 4.8 above) an be expressed in otonionialgebras, sine an otonion basis ontains 7 mutually antiommutative basis elements; however,it is not possible to hose 4 independent basis elements that are also assoiative, beause onlyassoiative triplets exist. Therefore, any otonioni representation of the Dira matries mustinlude nonassoiative parts that are not present in urrent textbook formulations in physis.One speulation is that dropping the nonassoiative parts of formulations today restrits phys-ial alulations to one or two fores (e.g. eletroweak interation), but introdue problematidivergenes when trying to merge more fores (e.g. strong fore problems when trying pertur-bation theory with a oupling onstant of order 1; or uni�ation of eletromagnetism, weak, orstrong fore with gravity). It is speulated that by keeping the nonassoiative parts, one anunify more fores, with fewer problems. A nonperturbative desription of the strong fore ouldbe possible, and unobservability of individual quarks results from nonassoiative unobservableoperators (see e.g. [10℄).



Nonassoiative quantum theory on otootonion algebra 74.4 Dira equation with eletromagneti �eldThe Dira matries an be hosen:
γ0 7→ −e1e1̇, γ1 7→ e7̇, γ2 7→ −e6̇, γ3 7→ e5̇. (4.12)Using the eletromagneti �eld Aµ =

(
A0, ~A

), harge q, and writing the four dimensional om-plex wave funtion Ψ into real parts ψr
µ and imaginary parts ψi

µ, the Dira equation with ele-tromagneti �eld (from [2℄ equation 6) an be expressed in otootonions:
(∇−m) Ψ = 0, (4.13)

∇ 7→ e1̇∂0 + e1e1̇qA0 (4.14)
−e1e7̇∂1 + e7̇qA1

+e1e6̇∂2 − e6̇qA2

−e1e5̇∂3 + e5̇qA3

= [e1̇ (∂0 + e1qA0)] (4.15)
+e1 [−e7̇ (∂1 + e1qA2) + e6̇ (∂2 + e1qA2)− e5̇ (∂3 + e1qA3)] ,

m 7→ m ≡ e0e0̇m, (4.16)
Ψ 7→ ψr

0 + e1̇ψ
i
0 + e2̇ψ

r
1 + e3̇ψ

i
1 (4.17)

+e1e4̇ψ
r
2 − e1e5̇ψ

i
2 − e1e6̇ψ

r
3 − e1e7̇ψ

i
3

=
(
ψr

0 + e1̇ψ
i
0 + e2̇ψ

r
1 + e3̇ψ

i
1

) (4.18)
+e1

(
e4̇ψ

r
2 − e5̇ψ

i
2 − e6̇ψ

r
3 − e7̇ψ

i
3

)
.4.5 Dira equation with eletromagneti and gravitational �eldPer [2℄ the generalization of equations (4.15) and (4.18) above, using a real number α, is:

∇ 7→ [e1̇ (∂0 + e1qA0)] (4.19)
+ exp (αe1) [−e7̇ (∂1 + e1qA1) + e6̇ (∂2 + e1qA2)− e5̇ (∂3 + e1qA3)] ,

Ψ 7→
(
ψr

0 + e1̇ψ
i
0 + e2̇ψ

r
1 + e3̇ψ

i
1

) (4.20)
+ exp (αe1)

(
e4̇ψ

r
2 − e5̇ψ

i
2 − e6̇ψ

r
3 − e7̇ψ

i
3

)
.The Dira matries orresponding to a hypothetial, purely gravitational interation α = 0 thensimply are:

γ0
gr 7→ −e1̇, γ1 7→ e7̇, γ2 7→ −e6̇, γ3 7→ e5̇. (4.21)5 Dimensional redution program (DRP)The �eld-free Dira equation used in the dimensional redution program [7℄ (now short: DRP)demonstrates three apparent fermion generations, eah onsisting of one massless spin 1/2 partilewith only one heliity, and one massive spin 1/2 partile. It has the form:

P̃ψ = 0, (5.1)
γ0γµp

µψ = 0, with µ ∈ {0, 1, . . . , 9} , and (5.2)
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γ0γµ =

(
−σ̃µ 0

0 σµ

)
, (5.3)using generalized Paul matries:

σ0 :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2...8 :=

(
0 −q
q 0

)
, σ9 :=

(
1 0
0 −1

)
,(5.4)

σ̃2...8 :=

(
0 q
−q 0

)
, (5.5)The q ∈ {e1, . . . , e7} are nonreal otonion basis elements.Compared to the traditional Dira equation, the imaginary basis element ı is generalized tothe 7 otonion basis elements. When seleting a preferred basis element, e.g. e4, the DRP takesadvantage of the remaining assoiative 3-yle {e1, e2, e3} for eigenvalue λ± alulation of (5.1):

λ± =
1

2
, (5.6)

ψ+ =

(
A
kD

)
, ψ+ =

(
kB
C

)
. (5.7)Here, k ∈ {e1, e2, e3}, and A,B,C,D any real number. This is in ontrast to the traditionalDira equation, where no hoie of k is possible, and therefore B and D both must be zero. Inthe DRP [7℄, the three hoies of k are interpreted as three generations of fermions with eletrons

e↑ =

(
1
k

)
, e↓ =

(
−k
1

)
, (5.8)neutrinos (massless) moving in z-diretion, with a single heliity state

νz =

(
0
k

)
, ν−z =

(
k
0

)
, (5.9)and a new, single omplex massless spin-12 partile, with the opposite heliityØz =

(
0
1

)
. (5.10)5.1 DRP in otootonionsThe lassial Dira matries have been modeled above in otootonions (equation 4.11) as:

γ0 7→ ejeṁ, γ1 7→ ek, γ2 7→ el, γ3 7→ en. (5.11)In order to generalize the imaginary basis element of γ2, as done in the DRP (equation 5.4), theDira equation must be modi�ed to beome of the form:
γ0 7→ ej , γ1 7→ ek, γ2 7→ eleṁ, γ3 7→ en. (5.12)This ould only be ahieved by Wik-rotating the time axis x0 7→ eṁ [x0] and also the y axis

x2 7→ eṁ [x2]. Then, the otonioni generalization of γ2 would be the hoie of eṁ.



Nonassoiative quantum theory on otootonion algebra 9In this formulation, the algebrai generators eṁ in the equation of motion (the Dira equation)would be the same as the generators of the Wik rotation of the time and one spaial axis, also
eṁ. This would ouple the algebrai generators of a nonassoiative bakground to physialparameters, whih is problemati when attempting to insert a physial �eld: Modeling dynamiinteration would likely beome ambiguous.One ould expet that if the DRP is key to desribing fermion generations on otonionibakground, then otootonions as proposed here will not be suessful for the desription ofnature. Conversely, if otootonions are key to nonassoiative quantum theory, then the DRPneeds to be modi�ed.5.2 A proposed generalized DRPThe argument for a proposed generalized dimensional redution program, to model fermiongenerations on otootonions, is as follows:
• It may be understood as a speial ase, to pik the lassial γ2 and expand its assoiatedimaginary basis element to otonions, as done in the DRP of [7℄. A generalization allowsany of the lassial γ matries to be expanded, in a way that allows for a quaternionidegree of freedom after seleting a preferred nonassoiative basis element.
• Applying suh a generalization to γ0 pairs the Dira matries from four dimensional Eu-lidean Quantum Gravity (4D EQG; equation 4.21) with the lassial Dira matries foreletromagnetism (equation 4.12).
• From this formulation, there is no preferene about whih relation is fundamental: The 4DEQG equation of motion, or the lassial Dira equation on Minkowskian spaetime.
• Sine the 4D EQG equation of motion allows a generalized DRP to be applied to any of its
γµ, it will now be assumed to be fundamental (as opposed to the lassial point of view,whih has Minkowskian spaetime as preferred, fundamental geometry of the �eld-freevauum).

• Suh a formulation may, at least in priniple, be wide enough to inlude the symmetries ofthe Standard Model, and is therefore onluded to be of interested for the desription ofnature.A preliminary look at
γ0 7→ ejeµ̇, γ1 7→ ek, γ2 7→ eleν̇ , γ3 7→ en, (5.13)with µ, ν ∈ {0, . . . , 7} yields the 4D EQG equation of motion for {µ = ν = 0}, the lassial Diraequation for {µ 6= 0, ν = 0}, and a generalized DRP on four dimensional Eulidean bakgroundfor {µ = 0, ν 6= 0}.In the ase {µ 6= 0, ν 6= 0, µ 6= ν}, there will always be two assoiative 3-yles {er, es, et}suh that any two basis elements in {eµ, eν , er, es, et} anti-ommute, and therefore reproduethe required eigenvalue / eigenfuntion ombinations from equation (5.7) above. It is thereforestill possible to desribe three fermion generations as in [7℄, from a slightly generalized DRP onotootonions.



10 J. Köplinger5.3 Supplying eletromagneti and gravitational �eldsOn a bakground
γ0 7→ ej , γ1 7→ ek, γ2 7→ el, γ3 7→ en, (5.14)with {j, k, l} an assoiative 3-yle, the generalized DRP on otootonions allows for fators
{
E0, E1, E2, E3

}
, (5.15)eah of whih may be a linear ombination of terms to basis elements {1, eµ̇, eν̇ , eρ̇, eσ̇} (in themost general ase), where the {eµ̇, eν̇ , eρ̇, eσ̇} form a nonassoiative otonioni quadruplet. Theremaining 3 basis elements with dotted index, that are not ontained in this quadruplet, mustneessarily be an assoiative 3-yle, and therefore allow the eigenvalue alulation as in (5.7).The generalized Dira equation is then:

(∇−m) Ψ = 0, (5.16)
∇ =

3∑

i=0

γiEi. (5.17)Mass m is positive and real. The wave funtion Ψ is a general otootonion.In this notation, the lassial Dira equation of a harge q with eletromagneti �eld Aµemerges from:
E0

EM := e4̇ (∂0 + e4̇qA0) , (5.18)
E1 := ∂1 + e4̇qA1, (5.19)
E2 := ∂2 + e4̇qA2, (5.20)
E3 := ∂3 + e4̇qA3. (5.21)Here, e4̇ is an arbitrary hoie of otonion basis element, out of a nonassoiative quadruplet

{e4̇, e5̇, e6̇, e7̇}. It applies the generalized DRP to the γ0 omponent of the equation of motion.4D EQG would then be desribed as [2℄:
E0

GR := ∂0 + e4̇qA0, (5.22)This allows for a simple, one-parameter uni�ation of EEM and EGR through a real mixing angle
α as:

E0
GR,EM := exp (αe4̇) (∂0 + e4̇qA0) , (5.23)5.4 Algebrai hoiesSo far it has been shown that previously proposed equations of motion of a spin 1/2 partile ineletromagneti and gravitational �elds [2℄ an be rewritten using otootonion algebra, whihalso allows for a generalized DRP after [7℄ that proposes to model fermion generations. Thissetion will examine the algebrai hoies and remaining freedoms, to �nd whether suh anapproah would be wide enough to model the symmetries of the Standard Model (namely, SU (2)�avor and SU (3) olor symmetry).
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(∇−m) Ψ = 0, (5.24)

∇ =
3∑

i=0

γiEi, (5.25)modeled gamma matries to otonion basis elements
γ0 7→ ej , γ1 7→ ek, γ2 7→ el, γ3 7→ en, (5.26)where {ej , ek, el} is an assoiative 3-yle. This a �rst algebrai hoie, beause the gammamatries ould just as well be mapped to a nonassoiative 4-tuple (as disussed in setion 4.2above). Without �eld, the Ei are hosen as linear derivatives, ∂i:
Ei

free := ∂i with i ∈ {0, 1, 2, 3} . (5.27)So far, no dotted otonion basis element (other than the unit element e0̇) has been used.A �eld was then introdued after hoosing an arbitrary nonreal otonion basis element fromthe dotted indies, e4̇, and the equation of motion is required to remain invariant when rotatingthe wave funtion Ψ along e4̇, i.e., under U(1) symmetry with respet to a preferred otonionelement:
Ψ 7−→ exp (e4̇qφ) Ψ′ (5.28)where the real number q is a harge, and ∂φ/∂i = Ai a four-potential.The invariant equation of motion then beomes:
Ei

U(1) := ∂i + e4̇qAi. (5.29)In omparison, the lassial Dira equation with eletromagneti �eld is exatly:
E0

EM := e4̇ (∂0 + e4̇qA0) = e4̇E
0
U(1), (5.30)

Ej
EM := Ej

U(1) with j ∈ {1, 2, 3} . (5.31)The same preferred otonion basis element e4̇ that was used for modeling U(1) invariane, isalso applied to the E0 omponent only. This was interpreted as generalized DRP, applied on the
γ0 �time� omponent.The algebrai hoies so far an be summarized:1. �Landsape hoie�: The gamma matries are modeled by four otonion basis elements

{ej , ek, el, en} that ontain an assoiative 3-yle {ej , ek, el} and a single nonassoiativebasis element en. This hoie is algebraially distint from hoosing a nonassoiative 4-tuple. It is also physially di�erent from hoosing more (or fewer?) than four gammamatries.2. �U(1) hoie�: The basis element e4̇ is hosen as the preferred basis element, to require
U(1) invariane of the equation of motion. This results in the 4D EQG equation of motionwith �eld.3. �GR-EM hoie�: Appliation of the generalized dimensional redution program (DRP) onthe time omponent (γ0), using the same preferred basis otonion e4̇ as was hosen for
U(1) invariane, results in the lassial Dira equation with eletromagneti �eld.



12 J. Köplinger5.5 Remaining freedoms (�symmetries�)Algebrai hoies orrespond to remaining degrees of freedom, that take advantage of the symme-tries of the formulation. Any symmetry within the otonions is available for exploit, to requireinvariane of the equation of motion. In otootonions, the dotted and undotted indies aremostly algebraially separate, they only mix at the real axis, e2µ = e2µ̇ = −e0e0̇ ≡ −1. Therefore,the symmetries between di�erent hoies of dotted and undotted nonreal otonion basis elementseah is desribed by G2, the smallest exeptional Lie group.The following symmetries govern otonion algebra in general (see e.g. [11℄):
• Transformation between the seven nonreal basis elements of an otonion, G2,
• transformation between six otonion basis elements, that leaves one preferred basis elementunhanged, SU (3),
• rotation within an assoiative 3-yle {ej , ek, el}, whih leaves the remaining nonassoiative4-tuple invariant, SU (2), and
• one-parameter rotation in the spae of one otonion basis {ej}, U(1).The orresponding freedoms, or symmetries of the formulation, then are:1. �Landsape freedom�: The gamma matries are modeled through undotted otonion in-dies. Beause any otonion basis element ould be hanged, the symmetries between thedi�erent hoies are desribed by G2. This inludes simple one-element rotation U(1), rota-tion within an assoiative 3-yle SU (2), and rotation between six otonion basis elementsthat leave a preferred seventh basis element unhanged SU (3).2. �Preferred basis freedom�: The preferred basis element e4̇ was hosen for requiring U(1)invariane for eletromagnetism and gravitation, and also for the generalized DRP on γ0to mix these two fores. Then the hoies for the remaining six dotted otonion basiselements is then desribed by SU (3) symmetry in general. Requiring the equation ofmotion to be invariant under suh SU (3) symmetry would have a nontrivial impat on the
Ai four potential, whih is modeled on dotted indies as well.3. �DRP hoie (spaial)�: The generalized DRP an be applied on any of the E1, E2, and
E3 omponents, using a ombination of dotted indies from a hosen nonassoiative 4-tuple {e4̇, e5̇, e6̇, e7̇}. This would leave a freedom within the preferred assoiative 3-yle
{e1̇, e2̇, e3̇} with its SU(2) symmetry, for modeling fermion generations. This also wouldhave a diret, nontrivial e�et on the existing Ai potential.5.6 Preliminary summaryTable 1 shows a shemati overview of the remaining freedoms of the formulation, after seleting

{e1, e2, e3} as the assoiative 3-yle that model γi, {e1̇, e2̇, e3̇} the 3-yle to model fermiongenerations after [7℄, and e7 and e7̇ as the preferred otonion basis for mixing eletromagnetism(EM) and gravitation (GR). There is:
• In the γi, a SU (2) invariane when rotating the hosen assoiative 3-yle,



Nonassoiative quantum theory on otootonion algebra 13Table 1. Shemati overview of remaining freedoms (�symmetries�) and speulative fore assignment,after a hosen otonion basis seletion for the γi and Ei.Otonion index: 1 2 3 4 5 6 7
γi: γ1 γ2 γ3 γ0

Ei: E1 E2 E3 E0Symmetry: SU(2) U (1)
SU (3) U (1)

G2Fore: weak? EM, GRstrong? EM, GR
• in the γi, a SU (3) invariane when keeping the preferred otonion basis element �xed andvarying all others,
• in the Ei, a SU (2) invariane in the assoiative 3-yle that is proposed to model fermiongenerations, and
• in the Ei, a SU (3) invariane when keeping the preferred otonion basis from eletromag-netism and gravitation �xed and rotating all others.6 Notes6.1 Expetation values from nonassoiative bakgroundIn lassial quantum mehanis, the expression for obtaining expetation values of an operator

∇ on a system modeled by wave funtions Ψ is:
〈Ψ|∇ |Ψ〉 (6.1)On otonions, however, this expression beomes ambiguous due to their nonassoiativity, asnonassoiative parts of the operator result in unobservables [10, 3℄. Satisfying only a Diraequation of the form (∇−m)Ψ = 0 therefore annot answer the question regarding generalobservation outomes. For omparison, the Dira equation with eletromagneti �eld was mod-eled in [13℄ on split-otonions, using expressions with three otonion basis elements, and thenassoiating �eld and wave funtion di�erently as ompared to spae and time derivatives. Whilethis formulation annot be brought into the form (∇−m) Ψ = 0, it ould well be speulatedthat the di�erene in formulation relates to the question for �nding general solutions.There are distint ases where the otonioni expression an be redued to assoiative matrixformulations, namely, for eletromagnetism and gravity. When alulating mixing e�ets betweenfores on nonassoiative bakground, or between fermion generations modeled by the DRP, thequestion remains how the proposed di�erential equations an atually be solved. This question isindependent from symmetries that leave the formulation itself invariant (whih an be answeredon the algebra level).



14 J. Köplinger6.2 A note on the landsape hoieAfter restriting the algebra to otootonions, the fundamental algebrai hoie was made, touse four γi as generators of the bakground, and four Ei to generate motion and dynamis. Also,the γi were hosen to ontain an assoiative 3-yle, whereas the Ei onsist of a nonassoiative4-tuple. The formulation was tied to earlier desriptions of eletromagnetism and gravity, aswell as, a proposal for modeling fermion generations. The remaining algebrai freedoms thenexposed the desired symmetries, to speulate that the general formulation may be wide enoughfor modeling all fores of the Standard Model.This landsape hoie is motivated by its potential ability to desribe nature, i.e., beause it�may work�. However, exlusion of other possible landsapes has not been examined yet: Whatdynami behavior would emerge when the γi would instead be hosen from a nonassoiative4-tuple? What if the Ei ontain an assoiative 3-yle? What if not four, but a di�erent numberof γi or Ei are used?These open questions need to be addressed, to speify the motivation for looking at otoo-tonion algebra more learly. If one wants to understand how exatly the physial priniples oftoday's desriptions of nature emerge from nonassoiative quantum theory, it must be lari�edbetter what the driving priniples are to preede suh emergene.6.3 Mahian approah to the hierarhy problemAn interpretation of Mah's priniple was o�ered in [8℄, to redue Plank's sale to the ele-troweak sale, by assuming a non-loal Mahian response of the universe in loal experiments. Itrequired for the gravitational �ux of a body to be distributed over all matter inside the horizon.Gravitation in this paper is modeled on four dimensional Eulidean bakground, i.e., to a metri:
ds2 = dt2 + |d~x|2 . (6.2)Following the argument from [12℄ that positive de�niteness of the norm relates to physial observ-ables, the model here would allow for a speulated purely gravitational proess to happen outsidethe light one. It ould span the entire universe d~x with no observer time dt passing, yet beallowable sine Eulidean norm is always positive de�nite. It ould therefore model the requiredstrong non-loal feedbak of all matter in the universe, to e�etively weaken the gravitationalfore loally in the referened Mahian approah.7 Summary and outlookIn this paper, otootonion algebra was used to expressed selet reent �ndings towards a quan-tum theory on nonassoiative algebra, in harmonized notation. This inluded a nonassoiativedeomposition of the spin operator, the Dira equation with �elds for eletromagnetism and fourdimensional Eulidean quantum gravity, and a generalized dimensional redution program formodeling fermion generations. Algebrai hoies and remaining freedoms (�symmetries�) wereexamined, and found to expose the desired properties to justify onsideration for modeling thefores of the Standard Model.Further examination will inlude ways to supply weak or strong �elds, how to unambiguouslypredit expetation values from quantum theory on nonassoiative bakground, larifying thephysial priniples that may drive a partiular landsape seletion on otootonion bakground,
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