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tThe Dira
 equation in physi
s was des
ribed earlier in a simple form through hyperboli
 o
tonion arithmeti
, and a 
ir
ular o
tonion
ounterpart exhibited 
ertain behavior whi
h one might expe
t from a quantum gravitational primitive. Both relations are expressible withuse of 
oni
 sedenion arithmeti
 (M-algebra) as the unifying number 
on
ept. A general 
on
ern exists when proposing physi
al for
es onthe same spa
e-time, but with respe
t to di�erent underlying geometries. Therefore, a needed 
on
ept of relativity will now be suggestedin terms of an invariant hypernumber modulus, to warrant universal appli
ability of physi
al law in equivalent frames of referen
e. Tosupport validity of su
h a 
on
ept, 
oni
 sedenions will be analyzed with respe
t to their hyperboli
 and 
ir
ular subalgebras. Representing
lassi
al Minkowski and a new Eu
lidean spa
e-time metri
 respe
tively, an alignment program for large body (non-quantum) physi
swill be proposed. Translated into the language and 
on
epts from General Relativity, its e�e
tive equivalen
e in the des
ription of gravitywill be shown. Some approa
hes to physi
s on number systems other than traditional 
omplex numbers will brie�y be 
ompared to the
urrent investigation in this paper.Key words: hypernumbers, spe
ial relativity, general relativity, 
oni
 
omplex numbers, 
ounter
omplex numbers, sedenions, o
tonions,physi
s on hyperboli
 and 
ir
ular geometry, quantum gravity1 Introdu
tionAny law in physi
s must be governed by a prin
iple of relativity: After spe
ifying equivalent frames of referen
e (�lab frames�),an invarian
e 
ondition must warrant universal validity of su
h law. When measurements �rst indi
ated over 100 years agothat the speed of light does not vary with the relative speed between light sour
e (the Sun) and observer (an interferometeron our rotating Earth), Albert Einstein proposed the theory of Spe
ial Relativity [1℄. It identi�es 
onditions under whi
h labframes are equivalent, and how they relate through spa
e-time transformations. Initially based on a thought experiment only[2℄, Einstein then extended this equivalen
e to the a

elerated observer of General Relativity : Sin
e gravitation a�e
ts all formsof energy alike, in
luding a body's mass at rest, any two gravitationally free-falling observers must pose equivalent frames ofreferen
e.Spe
ial Relativity is probably the most pre
isely 
on�rmed theory in physi
s, on both large s
ales and the quantum level.General Relativity also enjoys unrefuted validity on large s
ales, from the size of a ro
k (or obje
ts of 
omparable energy) up tothe entire universe. On the quantum level, however, inherent 
omputational di�
ulty from its mathemati
al des
ription posessome unresolved problems to-date.While no quantum gravitational e�e
ts have been 
on
lusively measured yet, 
urrent investigation on 
oni
 sedenion arith-meti
 [3,4℄ into signs of gravity [5,6℄ must test its 
ompatibility with General Relativity, despite the fundamental di�eren
e inmathemati
al and 
on
eptual des
ription.Therefore, relativity will �rst be de�ned by demanding invarian
e of a hypernumber modulus. Applied to 
oni
 sedenionalgebra, the 
ir
ular and hyperboli
 o
tonion subalgebras 
an be related to both the 
lassi
al Minkowski spa
e-time metri
 fromSpe
ial Relativity and a new Eu
lidean spa
e-time metri
. A �natural alignment of elementary equations� (NatAliE equations)program will be de�ned and proposed to integrate gravity on Eu
lidean metri
 into 
lassi
al physi
s on Minkowski spa
e-time.Translated into language and 
on
epts from General Relativity, this NatAliE equations program will e�e
tively turn out to beequivalent in its des
ription of gravity.At the end, a brief 
omparison with some other approa
hes to physi
s on non-traditional number systems will be o�ered.Email address: jens�prisage.
om (Jens Köplinger).Private version, all rights reserved by the authors De
ember 9, 2007



2 Invariant Coni
 Sedenion Modulus as Con
ept for RelativityAs shown in [5,6℄, using mass m and partial derivatives ∂µ := ∂/∂xµ of spa
e ~x := (x1, x2, x3) and time 1 t := x0, thefollowing 
oni
 sedenions 2 to the basis bcon16 ∈ {1, i1, ..., i7, i0, ε1, ..., ε7}

▽Q1 := (−m, ∂0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1)
▽Q2 := (0, 0, 0, 0, 0, ∂3,−∂2, ∂1, 0, 0, 0, 0, 0, 0, 0, 0) (2)and a real-number mixing angle α allow to model an operator ▽con16 to a
t on a parti
le's wave fun
tion:
▽con16 : =▽Q1 + exp (αi0)▽Q2 (3)The exponent term exp (αi0) e�e
tively rotates ▽Q2 in the (1, i0) plane and allows to transition the 
lassi
al Dira
 equation inphysi
s from a hyperboli
 o
tonion formulation into a new 
ir
ular o
tonioni
 
ounterpart.Physi
al frames of referen
e will now be de�ned as equivalent if the 
oordinate transformation from one into another leavesthe modulus dT of a new spa
e-time sedenion dτcon16 invariant.From ▽con16 (3) the positions of spa
ial dimensions and time with respe
t to the 
urrent 
oni
 sedenion algebra 
an beidenti�ed. The following de�nitions use small variations dxµ:
dτQ1 := (0, dx0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (4)
dτQ2 := (0, 0, 0, 0, 0, dx3,−dx2, dx1, 0, 0, 0, 0, 0, 0, 0, 0) (5)

dτcon16 := dτQ1 + exp (αi0) dτQ2 (6)The 
orresponding modulus is:
dT := |dτcon16| = |dτQ1 + exp (αi0) dτQ2| (7)One 
an then formulate a hypernumber modulus invarian
e theorem as follows:Theorem 1 Two lab frames A and A′ are equivalent with respe
t to physi
al law if a linear transformation from the respe
tive

xµ into x′µ 
oordinates leaves dT from (7) invariant. This de�nition of relativity is 
onsistent with 
urrent des
ription in physi
s.To provide proof, it will �rst be shown that without gravity the invarian
e 
ondition on dT des
ribes all 
entral prin
iples ofSpe
ial Relativity (Minkowski spa
e-time, and mass-energy-momentum relation). Then, an alignment program will be developedfor large body (non-quantum) physi
s that allows to translate the hypernumber relations into the language and 
on
epts ofGeneral Relativity, and to prove its e�e
tive equivalen
e.3 Equivalen
e to Spe
ial Relativity when Ex
luding GravityThe following physi
al prin
iples govern Spe
ial Relativity (see e.g. [7℄ 
hapters 1 through 5, or [8℄ 
hapter 13):(1) Any two frames of referen
e that are in 
onstant (non-a

elerated) motion with respe
t to ea
h other, or in no relativemotion at all, at any pla
e in spa
e ~x := (x1, x2, x3) and time t := x0, are equivalent.(2) The speed of light c is 
onstant in any equivalent frame of referen
e. The equation of motion for light (in the 
urrent
hoi
e of c ≡ 1) is des
ribed as dt2 − |d~x|
2

= 0. In general, for any two equivalent frames of referen
e A and A′ thetransformation from respe
tive xµ into x′µ 
oordinates leaves the expression dτ2
SRT := dt2 − |d~x|

2
= dt′2 − |d~x′|

2 invariant(for light: dτSRT = 0). This is also 
alled Minkowski spa
e-time (metri
).(3) A body's mass at rest m is a form of energy E. They relate to momentum ~p := (p1, p2, p3) through m2 = E2 − |~p|
2 whi
halso remains invariant for equivalent frames of referen
e.

1 Physi
al 
onstants c, h, and G are set to 1 in this paper, sin
e they are non-essential for the mathemati
al stru
ture. This pro
edureis also 
ommon in related �elds of physi
s. In addition, all indi
es will be written as lower indi
es here; if present, a metri
 tensor willbe written expli
itely. This deviation from 
ommon notation will later avoid a potential ambiguity in expressions on Eu
lidean (
ir
ular)and Minkowski (hyperboli
) spa
e-time metri
. Hypernumber notation and de�nitions are 
arried forward from [5,6℄.
2 Please note that de�nition (4) in [5℄ is in
orre
t and should be ∇hyp8 := (−m,∂0, 0, 0, 0,−∂3, ∂2,−∂1), as well as de�nition (3) shouldbe Ψhyp8 :=

`

ψr
0, ψ

i
0, ψ

r
1, ψ

i
1, ψ

r
2,−ψ

i
2,−ψ

r
3,−ψ

i
3

´. The di�erent de�nitions were the result of using a 
oni
 sedenion multipli
ation tablewhi
h identi�ed the 
lassi
al o
tonion element �l� with sedenion element −i4 instead of i4, therefore not being 
onsistent with the 
itedsour
es [3,13℄. 2



Prin
iples (1) and (2) are geometri
al 
onditions on spa
e and time, whereas (3) is a relation in terms of physi
al propertiesenergy and momentum.Lemma 2 With only its hyperboli
 o
tonion subalgebra, relativity as de�ned through the invariant 
oni
 sedenion modulus dTredu
es to the spa
e-time relations from the theory of Spe
ial Relativity (prin
iples 1 and 2).PROOF. The hyperboli
 o
tonion subalgebra from (7) to the basis bhyp8 ∈ {1, i1, i2, i3, ε4, ε5, ε6, ε7} 
orresponds to αhyp8 =

π/2. With exp (αhyp8i0) = i0 and sedenion modulus from [3,4℄ one obtains:
dThyp8 = |dτQ1 + i0dτQ2|

= |(0, dx0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−dx3, dx2,−dx1)|

=
4

√

(dx2
0 − dx2

3 − dx2
2 − dx2

1)
2

=

√

dt2 − |d~x|
2 (8)Demanding invarian
e of dThyp8 under a 
oordinate transformation of the xµ therefore 
orresponds to the invarian
e 
ondition

dτ2
SRT := dt2 − |d~x|

2 from Spe
ial Relativity and reprodu
es prin
iple (2) above.In order to satisfy prin
iple (1), su
h a 
oordinate transformation between xµ and x′µ 
oordinates of two equivalent framesof referen
e A and A′ must exist, and be a fun
tion of 
onstant relative speed between A and A′ only. The so-
alled Lorentztransformation in physi
s satis�es this requirement, in addition to leaving dτ2
SRT := dt2 − |d~x|

2 invariant (see e.g. the �rst
hapters in [7℄ for a 
omprehensive introdu
tion, or [8℄ se
tion 13.4). This proves lemma 2.The relation m2 = E2 − |~p|2 from prin
iple (3) 
an be shown to be a ne
essary 
ondition when 
onsistently de�ning dynami
alintera
tion through physi
al for
es (see e.g. [7℄ 
hapter 6). This requires introdu
tion of additional 
on
epts from physi
s.But also if treating E ≡ p0 and ~p as mere Fourier 
oe�
ients of time t ≡ x0 and spa
e ~x respe
tively (see also [6℄, or [9℄equation 75.8)
ψ (x) =

∫

d4p

(2π)
4ψ(p) exp

[

i

3
∑

ν=0

pνxν

] (9)without further physi
al interpretation, one 
an show that the modulus of a hyperboli
 o
tonion 
ontaining these pν reprodu
esthis important fundamental relation in physi
s, too 3 .Lemma 3 Formulation of relativity through hyperboli
 o
tonions produ
es a result from 
lassi
al physi
s, where the four-ve
tors
x = (t, ~x) and p = (E, ~p) relate to ea
h other through Fourier transformation, and satisfy 
orresponding invarian
e 
onditions
dτ2

SRT = dt2 −
∣

∣

∣

~dx
∣

∣

∣

2 and m2 = E2 − |~p|
2 (prin
iple 3).PROOF. In order to 
on
lude from an invarian
e 
ondition on spa
e-time dThyp8 to an invariant energy-momentum modulus

Mhyp8, the derivatives of spa
e and time ∂µ from ▽con16 (3) will be related to Fourier 
oe�
ients momentum ~p := (p1, p2, p3)and energy E := p0 respe
tively. As opposed to the 
lassi
al 
ase, spe
ial 
onsideration must be taken in hyperboli
 o
tonionrepresentation with respe
t to the 
hosen exponential orbit.In the de�nition of Ψhyp8 [5℄ the traditional imaginary base i was identi�ed with the sedenion base i1 when assigning thereal and imaginary parts ψr
µ and ψi

µ of the 
lassi
al wave fun
tion elements ψµ to 
oe�
ients on an o
tonion base.This identi�
ation will be 
arried forward, and ea
h ψµ is translated with (9) separately, in dire
t analogy to 
lassi
al physi
s:
ψµ (x) =

∫

d4p

(2π)
4ψµ(p) exp

[

i1

3
∑

ν=0

pνxν

] (10)Sin
e the ψµ only 
ontain a real part ψr
µ and imaginary part ψi

µ to the basis i1, the exponential term exp
[

i1
∑3

ν=0 pνxν

]
ommutes with the ψµ(p), and multipli
ation with additional sedenion base elements will be asso
iative (
oni
 sedenions arealternative [3℄).
3 An impli
it assumption is made that su
h expression through Fourier 
oe�
ients is a
tually possible, so that ∂0ψ (x) = iE ψ (x) and
∂jψ (x) = ipj ψ (x) allows to retrieve these 
oe�
ients. This is in analogy to 
urrent des
ription in quantum me
hani
s, where i∂0 and
−i∂j are 
alled �operators� on the wave fun
tion ψ to retrieve �measurables� E and ~p (but note the sign 
onvention of the ∂0 and Eterms). 3



Setting αhyp8 = π/2 in (3) yields
▽hyp8 = (m, ∂0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−∂3, ∂2,−∂1) (11)

=m+ i1∂0 − ε5∂3 + ε6∂2 − ε7∂1and one 
an identify for the four 
omponents ∂µ in ▽hyp8 to their respe
tive bases:
(i1∂0)ψµ (x) = i1 (i1E)ψµ (x) = −E ψµ (x) (12)

(−ε5∂3)ψµ (x) =−ε5 (i1p3)ψµ (x) = ε4p3 ψµ (x) (13)
(ε6∂2)ψµ (x) = ε6 (i1p2)ψµ (x) = ε7p2 ψµ (x) (14)

(−ε7∂1)ψµ (x) =−ε7 (i1p1)ψµ (x) = ε6p1 ψµ (x) (15)The �operator� ▽hyp8 (without m, whi
h is 
onstant) therefore relates to the following �observable� phyp8:
phyp8 =−E + ε4p3 + ε6p1 + ε7p2 (16)

= (−E, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, p3, 0, p1, p2)Repla
ing operator ▽hyp8 with observable phyp8, the hyperboli
 Dira
 equation ▽hyp8Ψhyp8 = 0 [5℄ 
an then be written as
phyp8Ψhyp8 =mΨhyp8 (17)(m real), and modularity of the number system allows to identify for non-zero |Ψhyp8|:
|phyp8Ψhyp8| = |phyp8| |Ψhyp8|= |mΨhyp8| = |m| |Ψhyp8|

|phyp8|= |m| (18)The hyperboli
 o
tonion modulus Mhyp8 of phyp8 is
Mhyp8 := |phyp8| =

√

E2 − |~p|
2

= |m| (19)whi
h reprodu
es the 
lassi
al mass-energy-momentum relation m2 = E2 − |~p|2. This proves lemma 3.Therefore, it has been shown that key fundamental prin
iples from Spe
ial Relativity are mathemati
ally des
ribed throughthe hyperboli
 o
tonion subalgebra of the invarian
e 
ondition on dT := |dτcon16|. This in
ludes Minkowski spa
e-time and themass-energy-momentum relation m2 = E2 − |~p|
2. It is noted that m, E and ~p were used only as 
onstants, and no physi
alinterpretation as mass, energy or momentum was needed.4 Equivalen
e to General Relativity when In
luding GravityThe invariant 
oni
 sedenion modulus |dτcon16| in its general form (i.e. for any α) has been suggested to also des
ribethe gravitational for
e, for whi
h 
urrent and experimentally proven des
ription in physi
s is given by the theory of GeneralRelativity. When probing this suggestion for validity, spe
ial 
onsideration must be taken with respe
t to the following:(1) The theory of General Relativity is built on prin
iples that don't exhibit an immediate relation to hypernumber arithmeti
.(2) Relativity as de�ned through an invariant hypernumber modulus has been developed from a quantum physi
al formalism,whereas 
omputational obsta
les in General Relativity limit 
on
lusive quantum gravitational 
al
ulations.To avoid potential ambiguity or spe
ulations with respe
t to quantum gravity, the following proof of equivalen
e will be limitedto the bran
h in physi
s that has been experimentally veri�ed: Large body (non-quantum) gravitation.The following will be demonstrated:(1) For large bodies in physi
s, the gravitational for
e 
an be treated separately from other for
es. Therefore, existen
e of a�Natural Alignment of Elementary Equations� (NatAliE equations) program will be proposed that allows to proje
t purelygravitational e�e
ts from the invariant 
oni
 sedenion modulus (α = 0) onto a non-gravitational observer (α = π/2).(2) These e�e
ts will be applied to a known equation of motion of a non-gravitational observer. The so modi�ed equation ofmotion will prove equivalent to the linearized �eld equations from General Relativity.4



(3) A known �bootstrap� argumentation will be referred to, whi
h has been shown to lead from the linearized �eld equationsto the 
ovariant �eld equations in General Relativity through 
onsistent self-intera
tion of the gravitational �eld. Thisreferen
e will 
on
lude the proof.In the absen
e of a 
urrent, generally agreed-upon quantum theory of gravitation, this approa
h appears to be reasonable andsu�
ient for non-quantum physi
s. Sin
e it 
annot be veri�ed due to la
k of empiri
al validation and mathemati
al des
riptionthereof, the following proposition must be added as prerequisite for the proof:Proposition 4 For large body (non-quantum) physi
s a �Natural Alignment of Elementary Equations� (NatAliE Equations)program is possible that 
al
ulates purely gravitational e�e
ts separately from other physi
al for
es and e�e
ts. The gravitationale�e
ts will be dedu
ed from the 
ir
ular o
tonion subalgebra in |dτcon16|, all other e�e
ts from the hyperboli
 o
tonion subalgebra.When an equation of motion is expressed in a way that unambiguously separates terms whi
h originate from the gravitationalfor
e from any other terms, one 
an proje
t results from 
ir
ular o
tonion (Eu
lidean) spa
e-time onto otherwise hyperboli
o
tonion (Minkowski) formulations. This 
orre
tly des
ribes gravity within said s
ope.The following statements support the argument for this proposition:(1) The known ability of a quantum system to be in more than one distin
t state simultaneously - prior to measurement -is re�e
ted in the 
ontinuous �mixing angle� α in dτcon16. Transition to large body (non-quantum) physi
s removes thisdegree of freedom, and parti
les and for
es must either a
t with respe
t to the distin
t α = 0 or α = π/2 spa
e-time.(2) The 
ir
ular o
tonion subalgebra of ▽con16Ψcon16 = 0 has exhibited a signature of gravity (treating parti
les and anti-parti
les alike [6℄), whi
h is a behavior distin
t from the hyperboli
 o
tonion subalgebra that was proven above to beequivalent to Spe
ial Relativity (ex
luding gravity).(3) It is possible that 
urrent des
ription of gravity in General Relativity evolved from a traditional point of view thatdes
ribes gravitational measurements and des
riptions as variations of the spa
e-time that governs the ele
tromagneti
for
e: Hyperboli
 Minkowski spa
e-time predominates human everyday per
eption of a world made from atoms (ele
tronsand nu
lei in ele
tromagneti
 intera
tion) and light (ele
tromagneti
 radiation).(4) Therefore, expressing spa
e-time in both 
ir
ular (Eu
lidean) and hyperboli
 metri
 in parallel, and then proje
ting therelations from 
ir
ular geometry onto hyperboli
 geometry, appears to be a valid mathemati
al pro
edure to investigategravity in 
oni
 sedenions.It is 
on
luded that proposition 4 is justi�able with respe
t to the 
urrent state of mathemati
al des
ription of physi
al law, tobe empiri
ally veri�ed or falsi�ed in the future.4.1 The �Natural Alignment of Elementary Equations� (NatAliE Equations) ProgramRelations from the 
ir
ular o
tonion subalgebra (α = 0, exp i0α = 1) 
ontained in the invarian
e 
ondition on the 
oni
sedenion modulus |dτcon16| 
an be 
al
ulated by 
omparison with the 
orresponding hyperboli
 o
tonion subalgebra above(α = π/2, exp i0α = i0).In analogy to (8) one obtains
dTcir8 = |dτQ1 + dτQ2|

= |(0, dx0, 0, 0, 0, dx3,−dx2, dx1, 0, 0, 0, 0, 0, 0, 0, 0)|

=

√

dt2 + |d~x|
2 (20)and 
al
ulations similar to the ones leading to (19) yield:

Mcir8 := |pcir8| =

√

E2 + |~p|
2 (21)This new property 4 will now be 
alled a body's �
ir
ular mass�, as opposed to a body's �hyperboli
 mass� Mhyp8.In Spe
ial Relativity the 
lassi
al (�hyperboli
�) Lorentz transformation warrants invarian
e of terms dThyp8 and Mhyp8 forframes of referen
e that are in non-a

elerated relative motion (e.g. [8℄ se
tion 13.4), or no relative motion at all. Using relative

4 By 
omparison with the 
lassi
al (hyperboli
) Dira
 equation, Mhyp8 was earlier identi�ed with the mass at rest m of a body. Onemay now argue that Mcir8 
orresponds to a body's heavy mass (whi
h gravitationally generates weight) sin
e it is de�ned on purelygravitational 
ir
ular (Eu
lidean) spa
e-time; whereas Mhyp8 may 
orrespond to a body's inert mass (i.e. its resistan
e to a

eleration).While this physi
al interpretation may be possible, the des
riptive symbols Mhyp8 and Mcir8 will still be used to highlight the notion thatboth are limited proje
tions of a wider 
on
ept Mcon16 := |pcon16|. 5



speed ~v between two su
h lab frames A and A′ with respe
tive 
oordinates xµ and x′µ, a new �
ir
ular� Lorentz transformation
Λcir8 will now be de�ned:

Λcir8 :=



















(

1 + |~v|
2
)

−1/2

|~v|
(

1 + |~v|
2
)

−1/2

0 0

− |~v|
(

1 + |~v|
2
)

−1/2 (

1 + |~v|
2
)

−1/2

0 0

0 0 1 0

0 0 0 1



















(22)
x′µ =

3
∑

ν=0

(Λcir8)µν xνThe x1 axis in this representation is oriented per de�nition in the dire
tion of the 
onne
ting ve
tor between ea
h two attra
tingmasses A and A′ (or a mass in A that generates a gravitational for
e on an observer in A′), whi
h is generally di�erent from thedire
tion of relative motion ~v. This de�nition of orientation narrows the frame of referen
e 
on
ept here to pairwise gravitationalintera
tion: The dire
tion a�e
ted by the 
ir
ular Lorentz transformation Λcir8 depends on where the observer in A′ is lo
atedrelative to the gravity generating mass in A. It 
an therefore be 
alled a �lo
al� transformation, whereas the 
lassi
al Lorentztransformation is de�ned globally (for any mass distribution at any xµ) by orienting the x1 axis in the dire
tion of relativemotion ~v of the observer. Nevertheless, moduli are magnitude without orientation and remain invariant globally in both 
ases.Lemma 5 For two frames of referen
e that are in 
onstant (non-a

elerated) motion with respe
t to ea
h other, or no relativemotion at all, at any pla
e in spa
e ~x := (x1, x2, x3) and time t := x0, the 
ir
ular Lorentz transformation leaves the 
ir
ularo
tonion modulus dTcir8 =

√

dt2 + |d~x|2 invariant.PROOF. The transformation (22) on |x| =

√

t2 + |~x|
2

=
√

∑3
µ=0x

2
µ yields:

|x′|=

√

3
∑

µ=0

(

3
∑

ν=0

(Λcir8)µν xν

)2 (23)
=

√

(

1 + |~v|2
)

−1 (

x2
0 + 2 |~v|x0x1 + |~v|2 x2

1

)

+
(

1 + |~v|2
)

−1 (

|~v|2 x2
0 − 2 |~v|x0x1 + x2

1

)

+ x2
2 + x2

3

=
√

∑3
µ=0x

2
µ =

√

t2 + |~x|2Sin
e Λcir8 is only a fun
tion of relative speed ~v, it is valid at any position in spa
e and time. Be
ause ~v is 
onstant (no relativea

eleration; d~v = 0 =⇒ dΛcir8 = 0) it also leaves
dTcir8 = |dx′|=

√

∑3
µ=0dx

′2
µ

=

√

3
∑

µ=0

(

3
∑

ν=0
(Λcir8)µν dxν

)2 (24)invariant. This proves lemma 5.The identity
Mcir8

Mhyp8
=
dTcir8

dThyp8
(25)derived from the Fourier 
oe�
ient pairs (E, |~p|) and (t, |~x|), together with relative speed |~v| = |d~x| /dt between A and A′,yields a proje
ted value of Mcir8 in hyperboli
 spa
e-time: 6



Mcir8

Mhyp8
=

√

E2 + |~p|
2

E2 − |~p|2
=

√

1 + |~v|
2

1 − |~v|2
(26)

Mcir8 =Mhyp8

√

1 + |~v|
2

1 − |~v|
2 (27)The mass term Mcir8, whi
h is to be used in purely gravitational 
ontext only, is in
reased as 
ompared to Mhyp8.A 
onsequen
e of the 
ir
ular Lorentz transformation is that distan
es |~x′| as observed in A′ appear expanded to

|~x|= |~x′|

√

1 + |~v|
2 (28)for an observer in A, if this distan
e is parallel to the 
onne
ting ve
tor between A and A′. Distan
es perpendi
ular to the
onne
ting ve
tor between A and A′ remain un
hanged. This length expansion is the 
ounterpart of 
lassi
al length 
ontra
tionfrom the hyperboli
 Lorentz transformation, for whi
h distan
es subje
t to length 
ontra
tion are parallel to the ve
tor of relativemotion ~v. The di�eren
e between length 
ontra
tion and length expansion, as well as, the di�eren
e in spa
ial orientation ofa�e
ted distan
es versus invariant measures in the perpendi
ular planes, will need to be taken into a

ount when proje
tinggravity from 
ir
ular (Eu
lidean) spa
e-time onto hyperboli
 (Minkowski) spa
etime.In order to exe
ute proposition 4 one needs to bring an equation of motion in large body (non-quantum) physi
s into a formthat unambiguously separates terms originating from the gravitational for
e from any other terms, and then perform aboveproje
tions from 
ir
ular (Eu
lidean) onto hyperboli
 (Minkowski) spa
e-time. This de�nes the NatAliE equations program.4.2 Prerequisites from Physi
sThe following are known relations in physi
s, together with some immediate dedu
tions therefrom, to be used to proveequivalen
e of the NatAliE equations program with General Relativity for non-quantum physi
s. Unless otherwise spe
i�ed,all following physi
al terms and properties (like Λhyp8, Tµν , Mµν , uν , ρ, gµν , hµν , or γ) are fun
tions of time and spa
e xµ(µ = 0, 1, 2, 3).4.2.1 Tensors and the Classi
al (Hyperboli
) Lorentz TransformationThe 
lassi
al hyperboli
 Lorentz transformation Λhyp8 from x into x′ 
oordinates 
an be expressed in symmetri
 4×4 matrixform (e.g. [7℄, or [8℄ se
tion 13.4):

(Λhyp8)νµ = (Λhyp8)µν =
∂xµ

∂x′ν
=
∂xν

∂x′µ
(29)A tensor of se
ond order Tµν satis�es the following transformation rule from x into x′ 
oordinates per de�nition:

T ′

µν =
3
∑

ρ,σ=0

(

∂xρ

∂x′µ

)(

∂xσ

∂x′ν

)

Tρσ

=

3
∑

ρ,σ=0

(Λhyp8)ρµ (Λhyp8)σν Tρσ (30)In abbreviated matrix arithmeti
 this 
an be written as:
T ′ = Λhyp8Λ

T
hyp8T

= Λ2
hyp8T (31)As a spe
ial 
ase, if a physi
al relation 
an be brought through a 
ertain 
hoi
e of 
oordinates into a form that uses theKrone
ker symbol δµν , one 
an generalize this physi
al relation by interpreting δµν as a 
oordinate-dependent representationof an otherwise general tensor:

δµν 7→

3
∑

ρ,σ=0

(Λhyp8)ρµ (Λhyp8)σν δρσ

=
(

Λ2
hyp8

)

µν
(32)7



The square of the 
lassi
al Lorentz transformation Λ2
hyp8 is the tensor that generalizes δρσ for any equivalent frame of referen
ewith respe
t to Spe
ial Relativity.For tensor 
al
ulus in general, if a linear relation between tensors is valid in one parti
ular 
hoi
e of 
oordinates xµ (or frameof referen
e A), its validity 
an automati
ally be inferred for any equivalent 
oordinate system x′µ (or frame of referen
e A′).4.2.2 Speed, Four-Velo
ity, and Expli
it Form of the Classi
al (Hyperboli
) Lorentz TransformationThe speed ~v of a physi
al body is its propagation in spa
e d~x during a parti
ular time interval dt ≡ dx0:

~v =
d~x

dx0
(33)This de�nition of speed generally transforms non-linear from one frame of referen
e A into another A′ (see e.g. [8℄ se
tion 13.5).Therefore, a four-velo
ity (or �invariant speed�) uµ is de�ned as

uµ : =
dxµ

dx0

(

1 −
|d~x|

2

dx2
0

)

−1/2 (34)whi
h transforms from A into A′ 
oordinates through the linear Lorentz transformation:
u′µ =

3
∑

ν=0

(Λhyp8)µν uν (35)The 
lassi
al Lorentz transformation and its square 
an then be written as 5 :
Λhyp8 =



















u0 u1 0 0

u1 u0 0 0

0 0 1 0

0 0 0 1



















(36)
Λ2

hyp8 =



















u2
0 + u2

1 2u0u1 0 0

2u0u1 u2
0 + u2

1 0 0

0 0 1 0

0 0 0 1



















(37)4.2.3 The Energy-Momentum Tensor without Pressure (�Mass Tensor�)The �eld equations of General Relativity are expressed with the use of an energy-momentum tensor that 
ontains termsfrom the motion of an arbitrary mass distribution, together with hydrostati
al pressure p. For ideal gases and many highly
ompressed hot bodies, p 
an be modeled from statisti
al random motion of individual parti
ulates. In all other 
ases, it is anaggregate physi
al property that is internally realized through quantum me
hani
al intera
tion between its 
onstituents (likee.g. a quark plasma during supernova explosion). Sin
e quantum me
hani
al e�e
ts are ex
luded here, it will be assumed thatany pressure term 
ould be realized by statisti
al random motion of many individual parti
ulates, and therefore it will be setto p = 0 further on 6 .
5 While these expressions are in 
oordinates for whi
h the x1 axis is oriented in the dire
tion of relative motion between A and A′, it isnoted that a general form 
an be obtained for any 
oordinate system. Every general Lorentz transformation Λ̄hyp8 and its square Λ̄2

hyp8
an be brought into the above form through a rotation in spa
e α: Λhyp8 := αΛ̄hyp8α
−1. Sin
e Λ̄T

hyp8 = Λ̄hyp8 and α−1 = αT one obtains
ΛT

hyp8 =
`

αΛ̄hyp8α
−1

´T
= Λhyp8 and therefore Λ2

hyp8 = Λhyp8Λ
T
hyp8 = αΛ̄hyp8Λ̄hyp8α

−1 = αΛ̄2
hyp8α

−1. In general, Λ̄hyp8 transforms thesame as Λ̄2
hyp8 under any rotation in spa
e α, and one 
an 
ontinue to examine the spe
ial 
ase of above 
oordinate orientation withoutlosing generality.

6 This approa
h is 
orre
t if one 
an show that all remaining terms are equivalent with General Relativity for any amount of sour
es ofgravitation; in
luding the 1 large point mass approximation for 
al
ulating the motion of a planet around a star, or �
ti
ious 
al
ulationsfor all 1060 (± a few) atoms in that same star. 8



Omitting hydrostati
al pressure, the energy-momentum tensor (e.g. [8℄ relation 18.72, or [10℄ relation 13.7) redu
es to themass tensor Mµν . Using mass density ρ and four-velo
ity uµ from (34) the mass tensor is:
Mµν : = ρuµuν (38)All terms ρ and uµ are a fun
tion of spa
e and time, and the resulting mass tensor Mµν 
an therefore des
ribe an arbitrarydistribution of masses, whi
h may be in any relative motion with respe
t to ea
h other. For a single point mass (or parti
ulate)

ρ(l) the mass tensor M(l)µν 
an be brought through rotation in spa
e into the form
M(l)µν =



















u2
0 u0u1 0 0

u0u1 u2
1 0 0

0 0 0 0

0 0 0 0



















(39)be
ause the general four-velo
ity �eld uµ redu
es in this 
ase to the distin
t four-velo
ity of the point mass ρ(l).With use of the Minkowski metri
 tensor ηµν whi
h is de�ned as
ηµν : =



















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



















(40)and Λ2
hyp8 from (37) the following identities 
an be veri�ed for a point mass ρ(l):

3
∑

µ,ν=0

M(l)µνηµν = ρ(l)

(

u2
0 − u2

1

)

= ρ(l) (41)
2M(l)µν − ρ(l)ηµν = ρ(l)

(

Λ2
hyp8

)

µν
(42)Sin
e M(l)µν , ηµν , and (Λ2

hyp8

)

µν
are tensors and ρ(l) is a 
onstant, the relation (42) is valid for any mass distribution Mµν :The transformation rules for all terms in this linear equation are the same, warranted through tensor 
al
ulus, and ea
h pointmass 
an be transformed into another equivalent frame of referen
e, using 
lassi
al hyperboli
 Lorentz transformation and arotation in spa
e, in a way that sets the dire
tion of motion of another point mass ρ(l+1) in x1 dire
tion. In�nite iteration overin�nitesimal masses ρ(l) therefore des
ribes any mass density distribution:

2Mµν − ρηµν = ρ
(

Λ2
hyp8

)

µν
(43)4.2.4 Newton Gravity Generalized A

ording to Spe
ial Relativity RulesIn [11℄ 
hapter 7 (�In
ompatibility of Gravity and Spe
ial Relativity�) o�ers a detailed analysis on how expression of gravityusing a non-a

elerated observer leads to an in
orre
t des
ription of gravity. The hypernumber invarian
e theorem under inves-tigation in this paper shares some 
ore assumptions with this analysis, but applies modi�
ations from proje
ting gravitationalterms from 
ir
ular onto hyperboli
 geometry.Newton gravity ([11℄ equation 7.1) will be generalized for 
ompatibility with the non-a

elerated observer of Spe
ial Relativitythrough a �Symmetri
 Tensor Gravitational Field� ([11℄ exer
ise 7.3, with detailed solution in box 7.1).There, use of a metri
 tensor gµν allows to mathemati
ally des
ribe an invariant property dτ2 as a fun
tion of progressionin spa
e d~x and time dt ≡ dx0 of a body as:

dτ2 =

3
∑

µ,ν=0

gµνdxµdxν (44)Expressing the metri
 tensor gµν in terms of ηµν (40) and a new tensor hµν as
gµν := ηµν + hµν (45)9



the generalization of Newton gravity be
omes 7 :
�hµν :=

(

∂2
0 −

3
∑

i=1

∂2
i

)

hµν = −8πMµν (46)Relations of this form 
an be solved through so-
alled �retarded potentials�: Whereas the quantities hµν and Mµν here area fun
tion of spa
e ~x and time t ≡ x0, the solutions for the hµν (t, ~x) 
an be written in terms of Mµν (t− |~r − ~x| , ~r), i.e. at anearlier time 
oordinate (see e.g. [11℄ equation 18.14, or [10℄ equation 27.16):
hµν (t, ~x) =−2

∫

d3r
Mµν (t− |~r − ~x| , ~x)

|~r − ~x|
(47)4.2.5 Linearized Field Equations from General Relativity and �Bootstrap� ArgumentationGravity is generated by all forms of energy alike, and the resulting for
e is always attra
tive. This makes it 
on
eptuallysimple, however, 
reates a 
omputational 
hallenge: Be
ause physi
al �elds are also 
arrier of energy, together with the verymasses that generate these �elds, one 
annot separate the �eld generating 
harges (the masses) from the resulting �eld anymore(as it is possible e.g. with ele
tromagnetism). The gravitational �eld and its sour
es are in dynami
 balan
e.This balan
e may be viewed from two 
on
eptual angles: 1) �Dynami
 geometry is the 'master �eld' of physi
s� (from [8℄ box18.1 whi
h 
ompares both viewpoints), or 2) a result of �a systemati
 approximation pro
edure� (from [10℄ se
tion 27.6) thatstarts on a so-
alled ��at� (non-dynami
) spa
e-time geometry and the �linearized �eld equations� (as will be dis
ussed now).Immediate �Einstein derivation� of the �eld equations in General Relativity uses the �rst 
on
eptual viewpoint, and derivationsfrom a �at spa
e-time (like the so-
alled �spin-2 derivation�) the se
ond. Both are proven equivalent and lead to the samee�e
tive for
e 8 .The se
ond approa
h is sometimes also 
alled the �bootstrap� pro
ess due to the iterative nature of its re�nement steps.From the �dynami
 geometry� viewpoint, this bootstrap pro
ess starts at a low energy density approximation (the linearized�eld equations) and subsequently re�nes it by 
onsistently taking e�e
ts from higher mass densities and velo
ities into a

ount.Adopting this argumentation similar to 
urrent use e.g. in the �spin-2 model�, it will be 
on
luded that it is su�
ient for avalid theory of gravitation to show that the immediate sour
e terms of gravitation (masses in motion) generate a gravitational�eld that is des
ribed by the linearized �eld equations from General Relativity.With a metri
 tensor gµν as in (45) gµν := ηµν + hµν the linearized �eld equations (see e.g. [11℄ equation 18.8b, or [10℄equation 27.14) 
an be written in the following form 9 :

�hµν =−16π

(

Mµν −
1

2
ρηµν

) (48)With use of (43) this be
omes
�hµν =−8πρ

(

Λ2
hyp8

)

µν
(49)4.3 Proof of Equivalen
e of the NatAliE Equations Program with the Linearized Field Equations from General RelativityLemma 6 The NatAliE Equations Program for any Mass Density Distribution in Arbitrary Motion is Equivalent to the Lin-earized Field Equations from General Relativity.PROOF. The following will be exe
uted:

7 From [11℄ box 7.1 equation 7; note the additional fa
tor 2 from de�nition of the h̄ in equation 7.8
. Also, the energy momentum tensor
Tµν is redu
ed here to the mass tensor Mµν sin
e pressure terms are set to 0.
8 While proven equivalent, derivations that originate on a �at spa
e-time are sometimes 
onsidered inferior to dynami
 geometri
alderivations, sin
e any su
h �at spa
e-time is proven to be not observable, and therefore out of rea
h by the experiment. It has even beenshown that one must ne
essarily arrive at the General Relativity �eld equations even when starting from an (unobservable) �arbitrarya-priory ba
kground� [12℄, whi
h does not need to be �at. Investigation of the invariant hypernumber modulus here may over
ome this la
kof experimental a

essibility, by demonstrating a fundamental mathemati
al arithmeti
 suitable for joint des
ription of a new quantumgravity and traditional quantum me
hani
s.
9 Note that per de�nition the h̄ in [11℄ or f̄ in [10℄ 
onsist of the hµν used here and an additional e�e
tive term −8π

h

P3
ρ,σ=0 Tρσηρσ

i

ηµνwhi
h redu
es for our 
hoi
e of internal pressure p = 0 to −8πρηµν . This term does not vary as fun
tion of spa
e and time, and is writtenexpli
itely here on the right side of the equation. 10



(1) Equation (46) is a relation that separates the generators of gravityMµν from their e�e
t on otherwise hyperboli
 spa
e-time
�hµν .(2) In its solutions (47) the terms ρ and 1/ |~r − ~x| 
an be identi�ed as purely gravitational: ρ is the mass distribution thatgenerates gravitation, and |~r − ~x| is the e�e
tive distan
e for the gravitational for
e. Both terms ρ and 1/ |~r − ~x| must berepla
ed with their proje
ted values ρ′ and 1/ |~r′ − ~x′| from 
ir
ular (Eu
lidean) geometry.(3) Sin
e (46) is a linear di�erential equation, one 
an 
al
ulate the e�e
tive solution for any ρ′ distribution by linear super-position of its individual 
onstituents.(4) For a single 
onstituent mass mcir8(l) the 
oordinates will be transformed in a way that allows to 
al
ulate the e�e
t oflength expansion from (28) in the dire
tion of motion ~v(l) = d~x(l)/dt(l) of the 
onstituent mcir8(l).(5) The result for this spe
ial 
hoi
e of 
oordinates will be generalized in tensor form, to be valid in any 
oordinate system.(6) Sin
e the resulting relation is linear and in tensor form, one is able to generalize the result for any number of individual
onstituents mhyp8(l).(7) In its generalized tensor form, the relation is equivalent to the linearized �eld equations from General Relativity in theirlow energy density approximation assumption.This will 
on
lude the proof.4.3.1 Gravity on Hyperboli
 Spa
e-timeAs shown in great detail in [11℄ exer
ise 7.3 and its solution in box 7.1, relation (46) de�nes a gravitation 
onsistent withSpe
ial Relativity, whi
h was proven above to be des
ribed through the hyperboli
 subalgebra of the invariant 
oni
 sedenionmodulus. This relation therefore quali�es as equation of motion on hyperboli
 spa
e-time geometry, onto whi
h gravitationale�e
ts from 
ir
ular geometry 
an be proje
ted a

ording to the NatAliE equations program.Terms hµν and Mµν will now be repla
ed with h′µν and M ′

µν to symbolize that they are subje
t to modi�
ations due toproje
ted results from 
ir
ular geometry:
�h′µν =−8πM ′

µν (50)4.3.2 Identifying Gravitational and Non-Gravitational TermsThe solutions of (50) are similar to (47) and allow to identify terms that originate from the gravitational for
e: Masses M ′

µνare the generators of a for
e that de
reases with distan
e |~r′ − ~x′|:
h′µν (t, ~x) =−2

∫

d3r
M ′

µν (t− |~r − ~x| , ~x)

|~r′ − ~x′|
(51)Lo
ation and motion of the 
harges, on the other hand, will 
ontinue to be expressed in 
oordinates t and ~x that are 
onsistentwith Spe
ial Relativity. This proje
ts the in�uen
e of a gravitational for
e from 
ir
ular spa
e-time onto an equation of motionon hyperboli
 spa
e-time.4.3.3 Proje
ted Results from Cir
ular Geometry on a Single Constituent of MµνThe general mass distribution ρ′ will now be separated into distin
t 
onstituent masses mcir8(l):

ρ′ :=
∑

l

mcir8(l) (52)Sin
e (50) is linear in h′µν and M ′

µν := ρ′uµuν it is possible to 
al
ulate the e�e
tive result of any mass distribution ρ′ withindividual four-velo
ities uµ by linear superposition.4.3.4 Spe
ial Choi
e of Coordinates for a Single mcir8(l)For a single mcir8(l) 
oordinates will be 
hosen for whi
h u(l)µ = (1, 0, 0, 0) and mcir8(l) is lo
ated at ~r′(l) = (0, 0, 0). Thisdes
ribes a body with mass mcir8(l) that is at rest in the 
oordinate origin. The mass tensor M ′

(l)µν (38) is then redu
ed to
M ′

(l)µν =







mcir8(l) (µ = ν = 0)

0 otherwise
(53)and (51) only yields a non-zero result in h′(l)µν for µ = ν = 0: 11



h′(l)00(t, ~x) =−2
mcir8(l) (t− |~x| , 0)

|~x′|
(54)In this 
hoi
e of 
oordinates, the relative speed of any observer 10 ~v(l) with respe
t to mcir8(l) is then simply:

~v(l) =
d~x

dt
(55)A

ording to (27) the proje
ted value of mcir8(l) from 
ir
ular onto hyperboli
 spa
e-time is the e�e
tive mass that generatesgravitational for
e on this observer:

mcir8(l) =mhyp8(l)

√

√

√

√

1 +
∣

∣~v(l)
∣

∣

2

1 −
∣

∣~v(l)
∣

∣

2 (56)Also, the distan
e e�e
tive for the gravitational for
e is length expanded (28):
|~x′|= |~x|

√

1 +
∣

∣~v(l)
∣

∣

2 (57)This yields h′(l)00(t, ~x) in terms of the e�e
tive proje
ted values as:
h′(l)00(t, ~x) =−2

mhyp8(l) (t− |~x| , 0)

|~x|

1 +
∣

∣~v(l)
∣

∣

2

√

1 −
∣

∣~v(l)
∣

∣

2
(58)With de�nition of a �eld

γ(l) : =
(

1 −
∣

∣~v(l)
∣

∣

2
)

−1/2 (59)and the spe
ial 
hoi
e of 
oordinates that put the progression of an observer in spa
e d~x and time dt into the dire
tion ofrelative speed ~v = d~x/dt between observer and mhyp8(l), one 
an identify the e�e
tive metri
 from (44):
dτ2 =

(

1 + h′(l)00 (t, ~x)
)

dt2 − |d~x|
2 (60)

=

(

1 − 2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|

(

1 +

∣

∣

∣

∣

d~x

dt

∣

∣

∣

∣

2
))

dt2 − |d~x|2 (61)
=

(

1 − 2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|

)

dt2 (62)
−

(

1 + 2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|

)

|d~x|
2This relation (62) 
an then be interpreted as spa
e-time metri
 that is generated from an e�e
tive h(l)µν(t, ~x):

h(l)µν(t, ~x) :=−2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















(63)
= −2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|
δµν (64)

10 An observer is any obje
t that experien
es the body's gravitational for
e; 
oordinates are 
hosen individually for ea
h mcir8(l) so thatthe observer is in motion, whereas mcir8(l) is at rest. This a

ounts for the lo
ality of the 
ir
ular Lorentz transformation (22).12



4.3.5 Generalization for Any Frame of Referen
eRelation (64) 
an be interpreted as solution to a new linear di�erential equation
�h(l)µν(t, ~x) =−8πγ(l)mhyp8(l) (t, 0) δµν (65)and the Krone
ker symbol δµν 
an be generalized to the tensor Λ2

hyp8 (32) for any 
hoi
e of 
oordinates:
�h(l)µν =−8πγ(l)mhyp8(l)Λ

2
hyp8 (66)Using (43) this 
an be written as:

�h(l)µν =−16πγ(l)

(

M(l)µν −
1

2
mhyp8(l)ηµν

) (67)4.3.6 Generalization for Any Mass DistributionIn analogy to the argumentation that leads from (42) to (43), all individual 
ontributions from all mhyp8(l) terms 
an beadded subsequently: The linear relations (66) and (67) in tensor form are valid for any equivalent frame of referen
e, andindividual 
ontributions from the mhyp8(l) 
an be added up through linear superposition of the respe
tive results.With
ρ : =

∑

l

mhyp8(l) (68)relation (67) be
omes for any mass distribution Mµν :
�hµν =−16πγ

(

Mµν −
1

2
ρηµν

) (69)4.3.7 Equivalen
e with Linearized Field Equations from General RelativityThe relation (69) as derived from the NatAliE equations program only di�ers from (48) by a velo
ity �eld γ = (1−|~v|
2
)−1/2.In the low energy density approximation used to derive the linearized �eld equations from General Relativity, only lowestorder o

urren
es of su
h fa
tors γ are 
arried forward. Additional fa
tors are are approximated γ ≈ 1 and are 
onsidered ahigher-order 
orre
tion.From the �bootstrap� argumentation it is possible to quantify the exa
t magnitude of su
h higher-order 
orre
tions. Generally,a signi�
ant in
rease in velo
ities in the sour
e �eld Mµν leads to stronger 
urvature �hµν . An additional �eld fa
tor γ in (69)has at least approximately the same e�e
t, and 
an therefore be 
onsidered a higher-order 
orre
tion that is ex
luded in thederivation approa
h of (48).Therefore, the �eld equations as derived from the NatAliE equations program are equivalent to the linearized �eld equationsas obtained from General Relativity, whi
h proves lemma 6.5 Con
lusion, Outlook, and Comparison with Other Approa
hes to Physi
s on Non-traditional Numbers5.1 Hypernumber Modulus Invarian
e Theorem Con
lusionThe fundamental prin
iples that govern Spe
ial Relativity were shown to be 
orre
tly represented through the hyperboli
o
tonion subalgebra of the invariant 
oni
 sedenion modulus (7). The 
orresponding 
ir
ular o
tonion subalgebra was used in theargument for proposition 4, for the existen
e of a NatAliE equations program that 
orre
tly des
ribes large body gravitation.It was argued that la
k of empiri
al information on quantum gravitational behavior, or a generally a

epted mathemati
aldes
ription thereof, prohibits 
on
lusive evaluation of this proposition at the moment: Hypernumber relations in this paperwere rationalized from 
omparison with 
urrent des
ription of quantum me
hani
s, whereas General Relativity 
an only be
on�rmed for non-quantum gravitation. It was argued a

ordingly that the NatAliE equations program is justi�able withrespe
t to the 
urrent state of mathemati
al des
ription of physi
al law, and 
ompatibility with gravity from General Relativitywas shown.Therefore, it is now 
on
luded that proper foundation for the hypernumber modulus invarian
e theorem (theorem 1) hasbeen established, limited only by outstanding experimental validation of its underlying assumptions.13



5.2 OutlookMany 
on
epts from physi
s were introdu
ed and referred to when investigating the NatAliE equations program. With
|dτcon16| as established invarian
e 
ondition that warrants validity of physi
al law in any equivalent frame of referen
e, these
on
epts are not needed anymore: Further investigation of |dτcon16| may fo
us only on geometri
al and number aspe
ts, andphysi
al quantities (like E, ~p, or m) may be treated (again) without having to atta
h further meaning or interpretation fromphysi
s; they may remain mere 
onstants or Fourier 
oe�
ients.In order to qualify 
oni
 sedenion arithmeti
 as a 
omplete des
ription of quantum me
hani
s, with respe
t to both theele
tromagneti
 and gravitational for
e, the 
on
ept of a physi
al �for
e �eld� is needed at last. The for
e �eld 
on
ept realizesmathemati
al des
ription of dynami
 intera
tion between its generating 
harges, as well as �eld self-intera
tion. Su
h a 
on
eptneeds to be understood in terms of hypernumber geometry, to possibly �nd support for some argumentation from physi
s usedabove (e.g. the gravitational for
e �eld is known to be a 
arrier of energy and therefore is generator of gravity itself).5.3 Comparison with Other Approa
hes to Physi
s on Non-traditional NumbersCharles Musès (1919-2000), who invented hypernumber arithmeti
s, has over time proposed potential approa
hes to physi
son hypernumbers. The following provides referen
e to some of Musès' ideas in this �eld and distinguishes the 
urrent approa
h.In addition, other re
ent investigation of physi
s on �split-o
tonions� is mentioned.Investigation into quantum gravity in [13℄ explores similarity between hypernumber arithmeti
s and relations that appear on�spin 2� gravity models in quantum �eld theory. These models are built on traditional hyperboli
 Minkowski spa
e-time only,and are subje
t to further investigation whether or not proje
tion of a gravitational ex
hange parti
le on 
ir
ular spa
e-timewould be
ome a spin 2 parti
le in hyperboli
 metri
, and how su
h proje
tion 
ould be rationalized.In the 
urrent paper, spa
e and time are treated as 
oordinates with identi
al properties; they are assigned to di�erent
oe�
ients in 
oni
 sedenion representation (3). This is in 
ontrast to the notion in [14℄ whi
h 
riti
izes this approa
h (e.g. se
tion�The Asymmetry of Time and Spa
e�). However, if one spe
ulatively interprets the invariant hypernumber modulus dT (7) assome kind of �universal time� that always in
reases, this interpretation 
ould be
ome 
ompatible with Musès' argumentation,due to the modularity of hypernumber bases: Being a modulus, dT represents pure magnitude without dire
tion, and is thereforedistin
t from the dimensionality of number system 
omponents. While some spa
e and time dimensions 
ould still be asso
iatedwith individual number system 
oe�
ients, this new universal time would pose a dimensionless unifying 
on
ept.A physi
al model that uses an unobservable extra dimension is proposed in [15℄. While it is not obvious in this model howrelativity (as dis
ussed in the 
urrent paper) 
ould be warranted e.g. with respe
t to 
onstant speed of ele
tromagneti
 radiation(light), it is interesting to potentially tie unobservable physi
al dimensions to w hypernumbers, as suggested in the 
losing notethere.In [16℄ Musès demonstrates how 
oni
 sedenions support a generalized 
on
ept of �re�e
tion� as 
ontinuous geometri
altransformation from one into a mirrored state. Together with other important properties of hypernumbers (e.g. the produ
tmodulus law, and 
ertain power orbit properties), these re�e
tions and similar transformations 
ould be
ome appli
able inphysi
s: Interpreted as symmetry transformations on wave fun
tions they may be further examined with respe
t to des
riptionof fundamental for
es.Re
ent investigation by Merab Gogberashvili on so-
alled �split-o
tonions� ([17,18℄) is also expressing fundamental physi
alrelations (the Dira
 equation with ele
tromagneti
 �eld) in a number system that is not simply a matrix extension of traditional
omplex numbers. It would be interesting to examine split-o
tonions and hypernumber o
tonion types for potential 
orrelation.A
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