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2 Invariant Coni Sedenion Modulus as Conept for RelativityAs shown in [5,6℄, using mass m and partial derivatives ∂µ := ∂/∂xµ of spae ~x := (x1, x2, x3) and time 1 t := x0, thefollowing oni sedenions 2 to the basis bcon16 ∈ {1, i1, ..., i7, i0, ε1, ..., ε7}

▽Q1 := (−m, ∂0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1)
▽Q2 := (0, 0, 0, 0, 0, ∂3,−∂2, ∂1, 0, 0, 0, 0, 0, 0, 0, 0) (2)and a real-number mixing angle α allow to model an operator ▽con16 to at on a partile's wave funtion:
▽con16 : =▽Q1 + exp (αi0)▽Q2 (3)The exponent term exp (αi0) e�etively rotates ▽Q2 in the (1, i0) plane and allows to transition the lassial Dira equation inphysis from a hyperboli otonion formulation into a new irular otonioni ounterpart.Physial frames of referene will now be de�ned as equivalent if the oordinate transformation from one into another leavesthe modulus dT of a new spae-time sedenion dτcon16 invariant.From ▽con16 (3) the positions of spaial dimensions and time with respet to the urrent oni sedenion algebra an beidenti�ed. The following de�nitions use small variations dxµ:
dτQ1 := (0, dx0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (4)
dτQ2 := (0, 0, 0, 0, 0, dx3,−dx2, dx1, 0, 0, 0, 0, 0, 0, 0, 0) (5)

dτcon16 := dτQ1 + exp (αi0) dτQ2 (6)The orresponding modulus is:
dT := |dτcon16| = |dτQ1 + exp (αi0) dτQ2| (7)One an then formulate a hypernumber modulus invariane theorem as follows:Theorem 1 Two lab frames A and A′ are equivalent with respet to physial law if a linear transformation from the respetive

xµ into x′µ oordinates leaves dT from (7) invariant. This de�nition of relativity is onsistent with urrent desription in physis.To provide proof, it will �rst be shown that without gravity the invariane ondition on dT desribes all entral priniples ofSpeial Relativity (Minkowski spae-time, and mass-energy-momentum relation). Then, an alignment program will be developedfor large body (non-quantum) physis that allows to translate the hypernumber relations into the language and onepts ofGeneral Relativity, and to prove its e�etive equivalene.3 Equivalene to Speial Relativity when Exluding GravityThe following physial priniples govern Speial Relativity (see e.g. [7℄ hapters 1 through 5, or [8℄ hapter 13):(1) Any two frames of referene that are in onstant (non-aelerated) motion with respet to eah other, or in no relativemotion at all, at any plae in spae ~x := (x1, x2, x3) and time t := x0, are equivalent.(2) The speed of light c is onstant in any equivalent frame of referene. The equation of motion for light (in the urrenthoie of c ≡ 1) is desribed as dt2 − |d~x|
2

= 0. In general, for any two equivalent frames of referene A and A′ thetransformation from respetive xµ into x′µ oordinates leaves the expression dτ2
SRT := dt2 − |d~x|

2
= dt′2 − |d~x′|

2 invariant(for light: dτSRT = 0). This is also alled Minkowski spae-time (metri).(3) A body's mass at rest m is a form of energy E. They relate to momentum ~p := (p1, p2, p3) through m2 = E2 − |~p|
2 whihalso remains invariant for equivalent frames of referene.

1 Physial onstants c, h, and G are set to 1 in this paper, sine they are non-essential for the mathematial struture. This proedureis also ommon in related �elds of physis. In addition, all indies will be written as lower indies here; if present, a metri tensor willbe written expliitely. This deviation from ommon notation will later avoid a potential ambiguity in expressions on Eulidean (irular)and Minkowski (hyperboli) spae-time metri. Hypernumber notation and de�nitions are arried forward from [5,6℄.
2 Please note that de�nition (4) in [5℄ is inorret and should be ∇hyp8 := (−m,∂0, 0, 0, 0,−∂3, ∂2,−∂1), as well as de�nition (3) shouldbe Ψhyp8 :=
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´. The di�erent de�nitions were the result of using a oni sedenion multipliation tablewhih identi�ed the lassial otonion element �l� with sedenion element −i4 instead of i4, therefore not being onsistent with the itedsoures [3,13℄. 2



Priniples (1) and (2) are geometrial onditions on spae and time, whereas (3) is a relation in terms of physial propertiesenergy and momentum.Lemma 2 With only its hyperboli otonion subalgebra, relativity as de�ned through the invariant oni sedenion modulus dTredues to the spae-time relations from the theory of Speial Relativity (priniples 1 and 2).PROOF. The hyperboli otonion subalgebra from (7) to the basis bhyp8 ∈ {1, i1, i2, i3, ε4, ε5, ε6, ε7} orresponds to αhyp8 =

π/2. With exp (αhyp8i0) = i0 and sedenion modulus from [3,4℄ one obtains:
dThyp8 = |dτQ1 + i0dτQ2|

= |(0, dx0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−dx3, dx2,−dx1)|

=
4

√

(dx2
0 − dx2

3 − dx2
2 − dx2

1)
2

=

√

dt2 − |d~x|
2 (8)Demanding invariane of dThyp8 under a oordinate transformation of the xµ therefore orresponds to the invariane ondition

dτ2
SRT := dt2 − |d~x|

2 from Speial Relativity and reprodues priniple (2) above.In order to satisfy priniple (1), suh a oordinate transformation between xµ and x′µ oordinates of two equivalent framesof referene A and A′ must exist, and be a funtion of onstant relative speed between A and A′ only. The so-alled Lorentztransformation in physis satis�es this requirement, in addition to leaving dτ2
SRT := dt2 − |d~x|

2 invariant (see e.g. the �rsthapters in [7℄ for a omprehensive introdution, or [8℄ setion 13.4). This proves lemma 2.The relation m2 = E2 − |~p|2 from priniple (3) an be shown to be a neessary ondition when onsistently de�ning dynamialinteration through physial fores (see e.g. [7℄ hapter 6). This requires introdution of additional onepts from physis.But also if treating E ≡ p0 and ~p as mere Fourier oe�ients of time t ≡ x0 and spae ~x respetively (see also [6℄, or [9℄equation 75.8)
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∫
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] (9)without further physial interpretation, one an show that the modulus of a hyperboli otonion ontaining these pν reproduesthis important fundamental relation in physis, too 3 .Lemma 3 Formulation of relativity through hyperboli otonions produes a result from lassial physis, where the four-vetors
x = (t, ~x) and p = (E, ~p) relate to eah other through Fourier transformation, and satisfy orresponding invariane onditions
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2 and m2 = E2 − |~p|
2 (priniple 3).PROOF. In order to onlude from an invariane ondition on spae-time dThyp8 to an invariant energy-momentum modulus

Mhyp8, the derivatives of spae and time ∂µ from ▽con16 (3) will be related to Fourier oe�ients momentum ~p := (p1, p2, p3)and energy E := p0 respetively. As opposed to the lassial ase, speial onsideration must be taken in hyperboli otonionrepresentation with respet to the hosen exponential orbit.In the de�nition of Ψhyp8 [5℄ the traditional imaginary base i was identi�ed with the sedenion base i1 when assigning thereal and imaginary parts ψr
µ and ψi

µ of the lassial wave funtion elements ψµ to oe�ients on an otonion base.This identi�ation will be arried forward, and eah ψµ is translated with (9) separately, in diret analogy to lassial physis:
ψµ (x) =

∫

d4p

(2π)
4ψµ(p) exp

[

i1

3
∑

ν=0

pνxν

] (10)Sine the ψµ only ontain a real part ψr
µ and imaginary part ψi

µ to the basis i1, the exponential term exp
[

i1
∑3

ν=0 pνxν

]ommutes with the ψµ(p), and multipliation with additional sedenion base elements will be assoiative (oni sedenions arealternative [3℄).
3 An impliit assumption is made that suh expression through Fourier oe�ients is atually possible, so that ∂0ψ (x) = iE ψ (x) and
∂jψ (x) = ipj ψ (x) allows to retrieve these oe�ients. This is in analogy to urrent desription in quantum mehanis, where i∂0 and
−i∂j are alled �operators� on the wave funtion ψ to retrieve �measurables� E and ~p (but note the sign onvention of the ∂0 and Eterms). 3



Setting αhyp8 = π/2 in (3) yields
▽hyp8 = (m, ∂0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−∂3, ∂2,−∂1) (11)

=m+ i1∂0 − ε5∂3 + ε6∂2 − ε7∂1and one an identify for the four omponents ∂µ in ▽hyp8 to their respetive bases:
(i1∂0)ψµ (x) = i1 (i1E)ψµ (x) = −E ψµ (x) (12)

(−ε5∂3)ψµ (x) =−ε5 (i1p3)ψµ (x) = ε4p3 ψµ (x) (13)
(ε6∂2)ψµ (x) = ε6 (i1p2)ψµ (x) = ε7p2 ψµ (x) (14)

(−ε7∂1)ψµ (x) =−ε7 (i1p1)ψµ (x) = ε6p1 ψµ (x) (15)The �operator� ▽hyp8 (without m, whih is onstant) therefore relates to the following �observable� phyp8:
phyp8 =−E + ε4p3 + ε6p1 + ε7p2 (16)

= (−E, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, p3, 0, p1, p2)Replaing operator ▽hyp8 with observable phyp8, the hyperboli Dira equation ▽hyp8Ψhyp8 = 0 [5℄ an then be written as
phyp8Ψhyp8 =mΨhyp8 (17)(m real), and modularity of the number system allows to identify for non-zero |Ψhyp8|:
|phyp8Ψhyp8| = |phyp8| |Ψhyp8|= |mΨhyp8| = |m| |Ψhyp8|

|phyp8|= |m| (18)The hyperboli otonion modulus Mhyp8 of phyp8 is
Mhyp8 := |phyp8| =

√

E2 − |~p|
2

= |m| (19)whih reprodues the lassial mass-energy-momentum relation m2 = E2 − |~p|2. This proves lemma 3.Therefore, it has been shown that key fundamental priniples from Speial Relativity are mathematially desribed throughthe hyperboli otonion subalgebra of the invariane ondition on dT := |dτcon16|. This inludes Minkowski spae-time and themass-energy-momentum relation m2 = E2 − |~p|
2. It is noted that m, E and ~p were used only as onstants, and no physialinterpretation as mass, energy or momentum was needed.4 Equivalene to General Relativity when Inluding GravityThe invariant oni sedenion modulus |dτcon16| in its general form (i.e. for any α) has been suggested to also desribethe gravitational fore, for whih urrent and experimentally proven desription in physis is given by the theory of GeneralRelativity. When probing this suggestion for validity, speial onsideration must be taken with respet to the following:(1) The theory of General Relativity is built on priniples that don't exhibit an immediate relation to hypernumber arithmeti.(2) Relativity as de�ned through an invariant hypernumber modulus has been developed from a quantum physial formalism,whereas omputational obstales in General Relativity limit onlusive quantum gravitational alulations.To avoid potential ambiguity or speulations with respet to quantum gravity, the following proof of equivalene will be limitedto the branh in physis that has been experimentally veri�ed: Large body (non-quantum) gravitation.The following will be demonstrated:(1) For large bodies in physis, the gravitational fore an be treated separately from other fores. Therefore, existene of a�Natural Alignment of Elementary Equations� (NatAliE equations) program will be proposed that allows to projet purelygravitational e�ets from the invariant oni sedenion modulus (α = 0) onto a non-gravitational observer (α = π/2).(2) These e�ets will be applied to a known equation of motion of a non-gravitational observer. The so modi�ed equation ofmotion will prove equivalent to the linearized �eld equations from General Relativity.4



(3) A known �bootstrap� argumentation will be referred to, whih has been shown to lead from the linearized �eld equationsto the ovariant �eld equations in General Relativity through onsistent self-interation of the gravitational �eld. Thisreferene will onlude the proof.In the absene of a urrent, generally agreed-upon quantum theory of gravitation, this approah appears to be reasonable andsu�ient for non-quantum physis. Sine it annot be veri�ed due to lak of empirial validation and mathematial desriptionthereof, the following proposition must be added as prerequisite for the proof:Proposition 4 For large body (non-quantum) physis a �Natural Alignment of Elementary Equations� (NatAliE Equations)program is possible that alulates purely gravitational e�ets separately from other physial fores and e�ets. The gravitationale�ets will be dedued from the irular otonion subalgebra in |dτcon16|, all other e�ets from the hyperboli otonion subalgebra.When an equation of motion is expressed in a way that unambiguously separates terms whih originate from the gravitationalfore from any other terms, one an projet results from irular otonion (Eulidean) spae-time onto otherwise hyperboliotonion (Minkowski) formulations. This orretly desribes gravity within said sope.The following statements support the argument for this proposition:(1) The known ability of a quantum system to be in more than one distint state simultaneously - prior to measurement -is re�eted in the ontinuous �mixing angle� α in dτcon16. Transition to large body (non-quantum) physis removes thisdegree of freedom, and partiles and fores must either at with respet to the distint α = 0 or α = π/2 spae-time.(2) The irular otonion subalgebra of ▽con16Ψcon16 = 0 has exhibited a signature of gravity (treating partiles and anti-partiles alike [6℄), whih is a behavior distint from the hyperboli otonion subalgebra that was proven above to beequivalent to Speial Relativity (exluding gravity).(3) It is possible that urrent desription of gravity in General Relativity evolved from a traditional point of view thatdesribes gravitational measurements and desriptions as variations of the spae-time that governs the eletromagnetifore: Hyperboli Minkowski spae-time predominates human everyday pereption of a world made from atoms (eletronsand nulei in eletromagneti interation) and light (eletromagneti radiation).(4) Therefore, expressing spae-time in both irular (Eulidean) and hyperboli metri in parallel, and then projeting therelations from irular geometry onto hyperboli geometry, appears to be a valid mathematial proedure to investigategravity in oni sedenions.It is onluded that proposition 4 is justi�able with respet to the urrent state of mathematial desription of physial law, tobe empirially veri�ed or falsi�ed in the future.4.1 The �Natural Alignment of Elementary Equations� (NatAliE Equations) ProgramRelations from the irular otonion subalgebra (α = 0, exp i0α = 1) ontained in the invariane ondition on the onisedenion modulus |dτcon16| an be alulated by omparison with the orresponding hyperboli otonion subalgebra above(α = π/2, exp i0α = i0).In analogy to (8) one obtains
dTcir8 = |dτQ1 + dτQ2|

= |(0, dx0, 0, 0, 0, dx3,−dx2, dx1, 0, 0, 0, 0, 0, 0, 0, 0)|

=

√

dt2 + |d~x|
2 (20)and alulations similar to the ones leading to (19) yield:

Mcir8 := |pcir8| =

√

E2 + |~p|
2 (21)This new property 4 will now be alled a body's �irular mass�, as opposed to a body's �hyperboli mass� Mhyp8.In Speial Relativity the lassial (�hyperboli�) Lorentz transformation warrants invariane of terms dThyp8 and Mhyp8 forframes of referene that are in non-aelerated relative motion (e.g. [8℄ setion 13.4), or no relative motion at all. Using relative

4 By omparison with the lassial (hyperboli) Dira equation, Mhyp8 was earlier identi�ed with the mass at rest m of a body. Onemay now argue that Mcir8 orresponds to a body's heavy mass (whih gravitationally generates weight) sine it is de�ned on purelygravitational irular (Eulidean) spae-time; whereas Mhyp8 may orrespond to a body's inert mass (i.e. its resistane to aeleration).While this physial interpretation may be possible, the desriptive symbols Mhyp8 and Mcir8 will still be used to highlight the notion thatboth are limited projetions of a wider onept Mcon16 := |pcon16|. 5



speed ~v between two suh lab frames A and A′ with respetive oordinates xµ and x′µ, a new �irular� Lorentz transformation
Λcir8 will now be de�ned:

Λcir8 :=
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(22)
x′µ =

3
∑

ν=0

(Λcir8)µν xνThe x1 axis in this representation is oriented per de�nition in the diretion of the onneting vetor between eah two attratingmasses A and A′ (or a mass in A that generates a gravitational fore on an observer in A′), whih is generally di�erent from thediretion of relative motion ~v. This de�nition of orientation narrows the frame of referene onept here to pairwise gravitationalinteration: The diretion a�eted by the irular Lorentz transformation Λcir8 depends on where the observer in A′ is loatedrelative to the gravity generating mass in A. It an therefore be alled a �loal� transformation, whereas the lassial Lorentztransformation is de�ned globally (for any mass distribution at any xµ) by orienting the x1 axis in the diretion of relativemotion ~v of the observer. Nevertheless, moduli are magnitude without orientation and remain invariant globally in both ases.Lemma 5 For two frames of referene that are in onstant (non-aelerated) motion with respet to eah other, or no relativemotion at all, at any plae in spae ~x := (x1, x2, x3) and time t := x0, the irular Lorentz transformation leaves the irularotonion modulus dTcir8 =

√

dt2 + |d~x|2 invariant.PROOF. The transformation (22) on |x| =
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t2 + |~x|2Sine Λcir8 is only a funtion of relative speed ~v, it is valid at any position in spae and time. Beause ~v is onstant (no relativeaeleration; d~v = 0 =⇒ dΛcir8 = 0) it also leaves
dTcir8 = |dx′|=

√

∑3
µ=0dx

′2
µ

=

√
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(Λcir8)µν dxν

)2 (24)invariant. This proves lemma 5.The identity
Mcir8

Mhyp8
=
dTcir8

dThyp8
(25)derived from the Fourier oe�ient pairs (E, |~p|) and (t, |~x|), together with relative speed |~v| = |d~x| /dt between A and A′,yields a projeted value of Mcir8 in hyperboli spae-time: 6



Mcir8

Mhyp8
=

√

E2 + |~p|
2

E2 − |~p|2
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2
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(26)

Mcir8 =Mhyp8
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2
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2 (27)The mass term Mcir8, whih is to be used in purely gravitational ontext only, is inreased as ompared to Mhyp8.A onsequene of the irular Lorentz transformation is that distanes |~x′| as observed in A′ appear expanded to

|~x|= |~x′|

√

1 + |~v|
2 (28)for an observer in A, if this distane is parallel to the onneting vetor between A and A′. Distanes perpendiular to theonneting vetor between A and A′ remain unhanged. This length expansion is the ounterpart of lassial length ontrationfrom the hyperboli Lorentz transformation, for whih distanes subjet to length ontration are parallel to the vetor of relativemotion ~v. The di�erene between length ontration and length expansion, as well as, the di�erene in spaial orientation ofa�eted distanes versus invariant measures in the perpendiular planes, will need to be taken into aount when projetinggravity from irular (Eulidean) spae-time onto hyperboli (Minkowski) spaetime.In order to exeute proposition 4 one needs to bring an equation of motion in large body (non-quantum) physis into a formthat unambiguously separates terms originating from the gravitational fore from any other terms, and then perform aboveprojetions from irular (Eulidean) onto hyperboli (Minkowski) spae-time. This de�nes the NatAliE equations program.4.2 Prerequisites from PhysisThe following are known relations in physis, together with some immediate dedutions therefrom, to be used to proveequivalene of the NatAliE equations program with General Relativity for non-quantum physis. Unless otherwise spei�ed,all following physial terms and properties (like Λhyp8, Tµν , Mµν , uν , ρ, gµν , hµν , or γ) are funtions of time and spae xµ(µ = 0, 1, 2, 3).4.2.1 Tensors and the Classial (Hyperboli) Lorentz TransformationThe lassial hyperboli Lorentz transformation Λhyp8 from x into x′ oordinates an be expressed in symmetri 4×4 matrixform (e.g. [7℄, or [8℄ setion 13.4):

(Λhyp8)νµ = (Λhyp8)µν =
∂xµ

∂x′ν
=
∂xν

∂x′µ
(29)A tensor of seond order Tµν satis�es the following transformation rule from x into x′ oordinates per de�nition:

T ′
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(

∂xρ
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∂xσ

∂x′ν

)

Tρσ

=

3
∑

ρ,σ=0

(Λhyp8)ρµ (Λhyp8)σν Tρσ (30)In abbreviated matrix arithmeti this an be written as:
T ′ = Λhyp8Λ

T
hyp8T

= Λ2
hyp8T (31)As a speial ase, if a physial relation an be brought through a ertain hoie of oordinates into a form that uses theKroneker symbol δµν , one an generalize this physial relation by interpreting δµν as a oordinate-dependent representationof an otherwise general tensor:

δµν 7→

3
∑

ρ,σ=0

(Λhyp8)ρµ (Λhyp8)σν δρσ

=
(

Λ2
hyp8

)

µν
(32)7



The square of the lassial Lorentz transformation Λ2
hyp8 is the tensor that generalizes δρσ for any equivalent frame of referenewith respet to Speial Relativity.For tensor alulus in general, if a linear relation between tensors is valid in one partiular hoie of oordinates xµ (or frameof referene A), its validity an automatially be inferred for any equivalent oordinate system x′µ (or frame of referene A′).4.2.2 Speed, Four-Veloity, and Expliit Form of the Classial (Hyperboli) Lorentz TransformationThe speed ~v of a physial body is its propagation in spae d~x during a partiular time interval dt ≡ dx0:

~v =
d~x

dx0
(33)This de�nition of speed generally transforms non-linear from one frame of referene A into another A′ (see e.g. [8℄ setion 13.5).Therefore, a four-veloity (or �invariant speed�) uµ is de�ned as

uµ : =
dxµ

dx0

(

1 −
|d~x|

2

dx2
0

)

−1/2 (34)whih transforms from A into A′ oordinates through the linear Lorentz transformation:
u′µ =

3
∑

ν=0

(Λhyp8)µν uν (35)The lassial Lorentz transformation and its square an then be written as 5 :
Λhyp8 =



















u0 u1 0 0

u1 u0 0 0

0 0 1 0

0 0 0 1



















(36)
Λ2

hyp8 =



















u2
0 + u2

1 2u0u1 0 0

2u0u1 u2
0 + u2

1 0 0

0 0 1 0

0 0 0 1



















(37)4.2.3 The Energy-Momentum Tensor without Pressure (�Mass Tensor�)The �eld equations of General Relativity are expressed with the use of an energy-momentum tensor that ontains termsfrom the motion of an arbitrary mass distribution, together with hydrostatial pressure p. For ideal gases and many highlyompressed hot bodies, p an be modeled from statistial random motion of individual partiulates. In all other ases, it is anaggregate physial property that is internally realized through quantum mehanial interation between its onstituents (likee.g. a quark plasma during supernova explosion). Sine quantum mehanial e�ets are exluded here, it will be assumed thatany pressure term ould be realized by statistial random motion of many individual partiulates, and therefore it will be setto p = 0 further on 6 .
5 While these expressions are in oordinates for whih the x1 axis is oriented in the diretion of relative motion between A and A′, it isnoted that a general form an be obtained for any oordinate system. Every general Lorentz transformation Λ̄hyp8 and its square Λ̄2

hyp8an be brought into the above form through a rotation in spae α: Λhyp8 := αΛ̄hyp8α
−1. Sine Λ̄T

hyp8 = Λ̄hyp8 and α−1 = αT one obtains
ΛT

hyp8 =
`

αΛ̄hyp8α
−1

´T
= Λhyp8 and therefore Λ2

hyp8 = Λhyp8Λ
T
hyp8 = αΛ̄hyp8Λ̄hyp8α

−1 = αΛ̄2
hyp8α

−1. In general, Λ̄hyp8 transforms thesame as Λ̄2
hyp8 under any rotation in spae α, and one an ontinue to examine the speial ase of above oordinate orientation withoutlosing generality.

6 This approah is orret if one an show that all remaining terms are equivalent with General Relativity for any amount of soures ofgravitation; inluding the 1 large point mass approximation for alulating the motion of a planet around a star, or �tiious alulationsfor all 1060 (± a few) atoms in that same star. 8



Omitting hydrostatial pressure, the energy-momentum tensor (e.g. [8℄ relation 18.72, or [10℄ relation 13.7) redues to themass tensor Mµν . Using mass density ρ and four-veloity uµ from (34) the mass tensor is:
Mµν : = ρuµuν (38)All terms ρ and uµ are a funtion of spae and time, and the resulting mass tensor Mµν an therefore desribe an arbitrarydistribution of masses, whih may be in any relative motion with respet to eah other. For a single point mass (or partiulate)

ρ(l) the mass tensor M(l)µν an be brought through rotation in spae into the form
M(l)µν =



















u2
0 u0u1 0 0

u0u1 u2
1 0 0

0 0 0 0

0 0 0 0



















(39)beause the general four-veloity �eld uµ redues in this ase to the distint four-veloity of the point mass ρ(l).With use of the Minkowski metri tensor ηµν whih is de�ned as
ηµν : =



















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



















(40)and Λ2
hyp8 from (37) the following identities an be veri�ed for a point mass ρ(l):

3
∑

µ,ν=0

M(l)µνηµν = ρ(l)

(

u2
0 − u2

1

)

= ρ(l) (41)
2M(l)µν − ρ(l)ηµν = ρ(l)

(

Λ2
hyp8

)

µν
(42)Sine M(l)µν , ηµν , and (Λ2

hyp8

)

µν
are tensors and ρ(l) is a onstant, the relation (42) is valid for any mass distribution Mµν :The transformation rules for all terms in this linear equation are the same, warranted through tensor alulus, and eah pointmass an be transformed into another equivalent frame of referene, using lassial hyperboli Lorentz transformation and arotation in spae, in a way that sets the diretion of motion of another point mass ρ(l+1) in x1 diretion. In�nite iteration overin�nitesimal masses ρ(l) therefore desribes any mass density distribution:

2Mµν − ρηµν = ρ
(

Λ2
hyp8

)

µν
(43)4.2.4 Newton Gravity Generalized Aording to Speial Relativity RulesIn [11℄ hapter 7 (�Inompatibility of Gravity and Speial Relativity�) o�ers a detailed analysis on how expression of gravityusing a non-aelerated observer leads to an inorret desription of gravity. The hypernumber invariane theorem under inves-tigation in this paper shares some ore assumptions with this analysis, but applies modi�ations from projeting gravitationalterms from irular onto hyperboli geometry.Newton gravity ([11℄ equation 7.1) will be generalized for ompatibility with the non-aelerated observer of Speial Relativitythrough a �Symmetri Tensor Gravitational Field� ([11℄ exerise 7.3, with detailed solution in box 7.1).There, use of a metri tensor gµν allows to mathematially desribe an invariant property dτ2 as a funtion of progressionin spae d~x and time dt ≡ dx0 of a body as:

dτ2 =

3
∑

µ,ν=0

gµνdxµdxν (44)Expressing the metri tensor gµν in terms of ηµν (40) and a new tensor hµν as
gµν := ηµν + hµν (45)9



the generalization of Newton gravity beomes 7 :
�hµν :=

(

∂2
0 −

3
∑

i=1

∂2
i

)

hµν = −8πMµν (46)Relations of this form an be solved through so-alled �retarded potentials�: Whereas the quantities hµν and Mµν here area funtion of spae ~x and time t ≡ x0, the solutions for the hµν (t, ~x) an be written in terms of Mµν (t− |~r − ~x| , ~r), i.e. at anearlier time oordinate (see e.g. [11℄ equation 18.14, or [10℄ equation 27.16):
hµν (t, ~x) =−2

∫

d3r
Mµν (t− |~r − ~x| , ~x)

|~r − ~x|
(47)4.2.5 Linearized Field Equations from General Relativity and �Bootstrap� ArgumentationGravity is generated by all forms of energy alike, and the resulting fore is always attrative. This makes it oneptuallysimple, however, reates a omputational hallenge: Beause physial �elds are also arrier of energy, together with the verymasses that generate these �elds, one annot separate the �eld generating harges (the masses) from the resulting �eld anymore(as it is possible e.g. with eletromagnetism). The gravitational �eld and its soures are in dynami balane.This balane may be viewed from two oneptual angles: 1) �Dynami geometry is the 'master �eld' of physis� (from [8℄ box18.1 whih ompares both viewpoints), or 2) a result of �a systemati approximation proedure� (from [10℄ setion 27.6) thatstarts on a so-alled ��at� (non-dynami) spae-time geometry and the �linearized �eld equations� (as will be disussed now).Immediate �Einstein derivation� of the �eld equations in General Relativity uses the �rst oneptual viewpoint, and derivationsfrom a �at spae-time (like the so-alled �spin-2 derivation�) the seond. Both are proven equivalent and lead to the samee�etive fore 8 .The seond approah is sometimes also alled the �bootstrap� proess due to the iterative nature of its re�nement steps.From the �dynami geometry� viewpoint, this bootstrap proess starts at a low energy density approximation (the linearized�eld equations) and subsequently re�nes it by onsistently taking e�ets from higher mass densities and veloities into aount.Adopting this argumentation similar to urrent use e.g. in the �spin-2 model�, it will be onluded that it is su�ient for avalid theory of gravitation to show that the immediate soure terms of gravitation (masses in motion) generate a gravitational�eld that is desribed by the linearized �eld equations from General Relativity.With a metri tensor gµν as in (45) gµν := ηµν + hµν the linearized �eld equations (see e.g. [11℄ equation 18.8b, or [10℄equation 27.14) an be written in the following form 9 :

�hµν =−16π

(

Mµν −
1

2
ρηµν

) (48)With use of (43) this beomes
�hµν =−8πρ

(

Λ2
hyp8

)

µν
(49)4.3 Proof of Equivalene of the NatAliE Equations Program with the Linearized Field Equations from General RelativityLemma 6 The NatAliE Equations Program for any Mass Density Distribution in Arbitrary Motion is Equivalent to the Lin-earized Field Equations from General Relativity.PROOF. The following will be exeuted:

7 From [11℄ box 7.1 equation 7; note the additional fator 2 from de�nition of the h̄ in equation 7.8. Also, the energy momentum tensor
Tµν is redued here to the mass tensor Mµν sine pressure terms are set to 0.
8 While proven equivalent, derivations that originate on a �at spae-time are sometimes onsidered inferior to dynami geometrialderivations, sine any suh �at spae-time is proven to be not observable, and therefore out of reah by the experiment. It has even beenshown that one must neessarily arrive at the General Relativity �eld equations even when starting from an (unobservable) �arbitrarya-priory bakground� [12℄, whih does not need to be �at. Investigation of the invariant hypernumber modulus here may overome this lakof experimental aessibility, by demonstrating a fundamental mathematial arithmeti suitable for joint desription of a new quantumgravity and traditional quantum mehanis.
9 Note that per de�nition the h̄ in [11℄ or f̄ in [10℄ onsist of the hµν used here and an additional e�etive term −8π

h

P3
ρ,σ=0 Tρσηρσ

i

ηµνwhih redues for our hoie of internal pressure p = 0 to −8πρηµν . This term does not vary as funtion of spae and time, and is writtenexpliitely here on the right side of the equation. 10



(1) Equation (46) is a relation that separates the generators of gravityMµν from their e�et on otherwise hyperboli spae-time
�hµν .(2) In its solutions (47) the terms ρ and 1/ |~r − ~x| an be identi�ed as purely gravitational: ρ is the mass distribution thatgenerates gravitation, and |~r − ~x| is the e�etive distane for the gravitational fore. Both terms ρ and 1/ |~r − ~x| must bereplaed with their projeted values ρ′ and 1/ |~r′ − ~x′| from irular (Eulidean) geometry.(3) Sine (46) is a linear di�erential equation, one an alulate the e�etive solution for any ρ′ distribution by linear super-position of its individual onstituents.(4) For a single onstituent mass mcir8(l) the oordinates will be transformed in a way that allows to alulate the e�et oflength expansion from (28) in the diretion of motion ~v(l) = d~x(l)/dt(l) of the onstituent mcir8(l).(5) The result for this speial hoie of oordinates will be generalized in tensor form, to be valid in any oordinate system.(6) Sine the resulting relation is linear and in tensor form, one is able to generalize the result for any number of individualonstituents mhyp8(l).(7) In its generalized tensor form, the relation is equivalent to the linearized �eld equations from General Relativity in theirlow energy density approximation assumption.This will onlude the proof.4.3.1 Gravity on Hyperboli Spae-timeAs shown in great detail in [11℄ exerise 7.3 and its solution in box 7.1, relation (46) de�nes a gravitation onsistent withSpeial Relativity, whih was proven above to be desribed through the hyperboli subalgebra of the invariant oni sedenionmodulus. This relation therefore quali�es as equation of motion on hyperboli spae-time geometry, onto whih gravitationale�ets from irular geometry an be projeted aording to the NatAliE equations program.Terms hµν and Mµν will now be replaed with h′µν and M ′

µν to symbolize that they are subjet to modi�ations due toprojeted results from irular geometry:
�h′µν =−8πM ′

µν (50)4.3.2 Identifying Gravitational and Non-Gravitational TermsThe solutions of (50) are similar to (47) and allow to identify terms that originate from the gravitational fore: Masses M ′

µνare the generators of a fore that dereases with distane |~r′ − ~x′|:
h′µν (t, ~x) =−2

∫

d3r
M ′

µν (t− |~r − ~x| , ~x)

|~r′ − ~x′|
(51)Loation and motion of the harges, on the other hand, will ontinue to be expressed in oordinates t and ~x that are onsistentwith Speial Relativity. This projets the in�uene of a gravitational fore from irular spae-time onto an equation of motionon hyperboli spae-time.4.3.3 Projeted Results from Cirular Geometry on a Single Constituent of MµνThe general mass distribution ρ′ will now be separated into distint onstituent masses mcir8(l):

ρ′ :=
∑

l

mcir8(l) (52)Sine (50) is linear in h′µν and M ′

µν := ρ′uµuν it is possible to alulate the e�etive result of any mass distribution ρ′ withindividual four-veloities uµ by linear superposition.4.3.4 Speial Choie of Coordinates for a Single mcir8(l)For a single mcir8(l) oordinates will be hosen for whih u(l)µ = (1, 0, 0, 0) and mcir8(l) is loated at ~r′(l) = (0, 0, 0). Thisdesribes a body with mass mcir8(l) that is at rest in the oordinate origin. The mass tensor M ′

(l)µν (38) is then redued to
M ′

(l)µν =







mcir8(l) (µ = ν = 0)

0 otherwise
(53)and (51) only yields a non-zero result in h′(l)µν for µ = ν = 0: 11



h′(l)00(t, ~x) =−2
mcir8(l) (t− |~x| , 0)

|~x′|
(54)In this hoie of oordinates, the relative speed of any observer 10 ~v(l) with respet to mcir8(l) is then simply:

~v(l) =
d~x

dt
(55)Aording to (27) the projeted value of mcir8(l) from irular onto hyperboli spae-time is the e�etive mass that generatesgravitational fore on this observer:

mcir8(l) =mhyp8(l)

√

√

√

√

1 +
∣

∣~v(l)
∣

∣

2

1 −
∣

∣~v(l)
∣

∣

2 (56)Also, the distane e�etive for the gravitational fore is length expanded (28):
|~x′|= |~x|

√

1 +
∣

∣~v(l)
∣

∣

2 (57)This yields h′(l)00(t, ~x) in terms of the e�etive projeted values as:
h′(l)00(t, ~x) =−2

mhyp8(l) (t− |~x| , 0)

|~x|

1 +
∣

∣~v(l)
∣

∣

2

√

1 −
∣

∣~v(l)
∣

∣

2
(58)With de�nition of a �eld

γ(l) : =
(

1 −
∣

∣~v(l)
∣

∣

2
)

−1/2 (59)and the speial hoie of oordinates that put the progression of an observer in spae d~x and time dt into the diretion ofrelative speed ~v = d~x/dt between observer and mhyp8(l), one an identify the e�etive metri from (44):
dτ2 =

(

1 + h′(l)00 (t, ~x)
)

dt2 − |d~x|
2 (60)

=

(

1 − 2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|

(

1 +

∣

∣

∣

∣

d~x

dt

∣

∣

∣

∣

2
))

dt2 − |d~x|2 (61)
=

(

1 − 2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|

)

dt2 (62)
−

(

1 + 2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|

)

|d~x|
2This relation (62) an then be interpreted as spae-time metri that is generated from an e�etive h(l)µν(t, ~x):

h(l)µν(t, ~x) :=−2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















(63)
= −2γ(l)

mhyp8(l) (t− |~x| , 0)

|~x|
δµν (64)

10 An observer is any objet that experienes the body's gravitational fore; oordinates are hosen individually for eah mcir8(l) so thatthe observer is in motion, whereas mcir8(l) is at rest. This aounts for the loality of the irular Lorentz transformation (22).12



4.3.5 Generalization for Any Frame of RefereneRelation (64) an be interpreted as solution to a new linear di�erential equation
�h(l)µν(t, ~x) =−8πγ(l)mhyp8(l) (t, 0) δµν (65)and the Kroneker symbol δµν an be generalized to the tensor Λ2

hyp8 (32) for any hoie of oordinates:
�h(l)µν =−8πγ(l)mhyp8(l)Λ

2
hyp8 (66)Using (43) this an be written as:

�h(l)µν =−16πγ(l)

(

M(l)µν −
1

2
mhyp8(l)ηµν

) (67)4.3.6 Generalization for Any Mass DistributionIn analogy to the argumentation that leads from (42) to (43), all individual ontributions from all mhyp8(l) terms an beadded subsequently: The linear relations (66) and (67) in tensor form are valid for any equivalent frame of referene, andindividual ontributions from the mhyp8(l) an be added up through linear superposition of the respetive results.With
ρ : =

∑

l

mhyp8(l) (68)relation (67) beomes for any mass distribution Mµν :
�hµν =−16πγ

(

Mµν −
1

2
ρηµν

) (69)4.3.7 Equivalene with Linearized Field Equations from General RelativityThe relation (69) as derived from the NatAliE equations program only di�ers from (48) by a veloity �eld γ = (1−|~v|
2
)−1/2.In the low energy density approximation used to derive the linearized �eld equations from General Relativity, only lowestorder ourrenes of suh fators γ are arried forward. Additional fators are are approximated γ ≈ 1 and are onsidered ahigher-order orretion.From the �bootstrap� argumentation it is possible to quantify the exat magnitude of suh higher-order orretions. Generally,a signi�ant inrease in veloities in the soure �eld Mµν leads to stronger urvature �hµν . An additional �eld fator γ in (69)has at least approximately the same e�et, and an therefore be onsidered a higher-order orretion that is exluded in thederivation approah of (48).Therefore, the �eld equations as derived from the NatAliE equations program are equivalent to the linearized �eld equationsas obtained from General Relativity, whih proves lemma 6.5 Conlusion, Outlook, and Comparison with Other Approahes to Physis on Non-traditional Numbers5.1 Hypernumber Modulus Invariane Theorem ConlusionThe fundamental priniples that govern Speial Relativity were shown to be orretly represented through the hyperboliotonion subalgebra of the invariant oni sedenion modulus (7). The orresponding irular otonion subalgebra was used in theargument for proposition 4, for the existene of a NatAliE equations program that orretly desribes large body gravitation.It was argued that lak of empirial information on quantum gravitational behavior, or a generally aepted mathematialdesription thereof, prohibits onlusive evaluation of this proposition at the moment: Hypernumber relations in this paperwere rationalized from omparison with urrent desription of quantum mehanis, whereas General Relativity an only beon�rmed for non-quantum gravitation. It was argued aordingly that the NatAliE equations program is justi�able withrespet to the urrent state of mathematial desription of physial law, and ompatibility with gravity from General Relativitywas shown.Therefore, it is now onluded that proper foundation for the hypernumber modulus invariane theorem (theorem 1) hasbeen established, limited only by outstanding experimental validation of its underlying assumptions.13



5.2 OutlookMany onepts from physis were introdued and referred to when investigating the NatAliE equations program. With
|dτcon16| as established invariane ondition that warrants validity of physial law in any equivalent frame of referene, theseonepts are not needed anymore: Further investigation of |dτcon16| may fous only on geometrial and number aspets, andphysial quantities (like E, ~p, or m) may be treated (again) without having to attah further meaning or interpretation fromphysis; they may remain mere onstants or Fourier oe�ients.In order to qualify oni sedenion arithmeti as a omplete desription of quantum mehanis, with respet to both theeletromagneti and gravitational fore, the onept of a physial �fore �eld� is needed at last. The fore �eld onept realizesmathematial desription of dynami interation between its generating harges, as well as �eld self-interation. Suh a oneptneeds to be understood in terms of hypernumber geometry, to possibly �nd support for some argumentation from physis usedabove (e.g. the gravitational fore �eld is known to be a arrier of energy and therefore is generator of gravity itself).5.3 Comparison with Other Approahes to Physis on Non-traditional NumbersCharles Musès (1919-2000), who invented hypernumber arithmetis, has over time proposed potential approahes to physison hypernumbers. The following provides referene to some of Musès' ideas in this �eld and distinguishes the urrent approah.In addition, other reent investigation of physis on �split-otonions� is mentioned.Investigation into quantum gravity in [13℄ explores similarity between hypernumber arithmetis and relations that appear on�spin 2� gravity models in quantum �eld theory. These models are built on traditional hyperboli Minkowski spae-time only,and are subjet to further investigation whether or not projetion of a gravitational exhange partile on irular spae-timewould beome a spin 2 partile in hyperboli metri, and how suh projetion ould be rationalized.In the urrent paper, spae and time are treated as oordinates with idential properties; they are assigned to di�erentoe�ients in oni sedenion representation (3). This is in ontrast to the notion in [14℄ whih ritiizes this approah (e.g. setion�The Asymmetry of Time and Spae�). However, if one speulatively interprets the invariant hypernumber modulus dT (7) assome kind of �universal time� that always inreases, this interpretation ould beome ompatible with Musès' argumentation,due to the modularity of hypernumber bases: Being a modulus, dT represents pure magnitude without diretion, and is thereforedistint from the dimensionality of number system omponents. While some spae and time dimensions ould still be assoiatedwith individual number system oe�ients, this new universal time would pose a dimensionless unifying onept.A physial model that uses an unobservable extra dimension is proposed in [15℄. While it is not obvious in this model howrelativity (as disussed in the urrent paper) ould be warranted e.g. with respet to onstant speed of eletromagneti radiation(light), it is interesting to potentially tie unobservable physial dimensions to w hypernumbers, as suggested in the losing notethere.In [16℄ Musès demonstrates how oni sedenions support a generalized onept of �re�etion� as ontinuous geometrialtransformation from one into a mirrored state. Together with other important properties of hypernumbers (e.g. the produtmodulus law, and ertain power orbit properties), these re�etions and similar transformations ould beome appliable inphysis: Interpreted as symmetry transformations on wave funtions they may be further examined with respet to desriptionof fundamental fores.Reent investigation by Merab Gogberashvili on so-alled �split-otonions� ([17,18℄) is also expressing fundamental physialrelations (the Dira equation with eletromagneti �eld) in a number system that is not simply a matrix extension of traditionalomplex numbers. It would be interesting to examine split-otonions and hypernumber otonion types for potential orrelation.AknowledgementsI am thankful to Kevin Carmody for his ontinued support of hypernumber researh in general, providing omprehensiveand valuable �points and referenes� to works by C. Musès, and for larifying the oni sedenion modulus. For furtherinformation on hypernumbers in general see e.g. http://www.kevinarmody.om/math/hypernumbers.html.Also, a speial thank you to the members in the hypernumbers disussion group moderated by Mr. Carmody for manyfruitful suggestions and inspiring disussions.Referenes[1℄ A. Einstein, Zur Elektrodynamik Bewegter Körper (On the Eletrodynamis of Moving Bodies). Annalen der Physik (ser. 4) 17:891-921 (1905). 14
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