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Abstract

The Dirac equation in physics was described earlier in a simple form through hyperbolic octonion arithmetic, and a circular octonion
counterpart exhibited certain behavior which one might expect from a quantum gravitational primitive. Both relations are expressible with
use of conic sedenion arithmetic (M-algebra) as the unifying number concept. A general concern exists when proposing physical forces on
the same space-time, but with respect to different underlying geometries. Therefore, a needed concept of relativity will now be suggested
in terms of an invariant hypernumber modulus, to warrant universal applicability of physical law in equivalent frames of reference. To
support validity of such a concept, conic sedenions will be analyzed with respect to their hyperbolic and circular subalgebras. Representing
classical Minkowski and a new Euclidean space-time metric respectively, an alignment program for large body (non-quantum) physics
will be proposed. Translated into the language and concepts from General Relativity, its effective equivalence in the description of gravity
will be shown. Some approaches to physics on number systems other than traditional complex numbers will briefly be compared to the
current investigation in this paper.
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1 Introduction

Any law in physics must be governed by a principle of relativity: After specifying equivalent frames of reference (“lab frames”),
an invariance condition must warrant universal validity of such law. When measurements first indicated over 100 years ago
that the speed of light does not vary with the relative speed between light source (the Sun) and observer (an interferometer
on our rotating Earth), Albert Einstein proposed the theory of Special Relativity [1]. It identifies conditions under which lab
frames are equivalent, and how they relate through space-time transformations. Initially based on a thought experiment only
[2], Einstein then extended this equivalence to the accelerated observer of General Relativity: Since gravitation affects all forms
of energy alike, including a body’s mass at rest, any two gravitationally free-falling observers must pose equivalent frames of
reference.

Special Relativity is probably the most precisely confirmed theory in physics, on both large scales and the quantum level.
General Relativity also enjoys unrefuted validity on large scales, from the size of a rock (or objects of comparable energy) up to
the entire universe. On the quantum level, however, inherent computational difficulty from its mathematical description poses
some unresolved problems to-date.

While no quantum gravitational effects have been conclusively measured yet, current investigation on conic sedenion arith-
metic [3,4] into signs of gravity [5,6] must test its compatibility with General Relativity, despite the fundamental difference in
mathematical and conceptual description.

Therefore, relativity will first be defined by demanding invariance of a hypernumber modulus. Applied to conic sedenion
algebra, the circular and hyperbolic octonion subalgebras can be related to both the classical Minkowski space-time metric from
Special Relativity and a new Euclidean space-time metric. A “natural alignment of elementary equations” (NatAliF equations)
program will be defined and proposed to integrate gravity on Euclidean metric into classical physics on Minkowski space-time.
Translated into language and concepts from General Relativity, this NatAliFE equations program will effectively turn out to be
equivalent in its description of gravity.

At the end, a brief comparison with some other approaches to physics on non-traditional number systems will be offered.
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2 Invariant Conic Sedenion Modulus as Concept for Relativity

As shown in [5,6], using mass m and partial derivatives 9, := 0/0x, of space & := (x1,x2,x3) and time! t := zg, the
following conic sedenions ? to the basis beon1s € {1,101, .., %7, 90,1, -, €7}

VaQl:= (—m,@o,0,0,0,0,0,0, 050707070707050) (1)
VQQ = (0707070707837_827817 070707070707070) (2)

and a real-number mixing angle « allow to model an operator /con16 t0 act on a particle’s wave function:

Vconl6 @ = VQl + exp (Oéio) VQQ (3)

The exponent term exp (o) effectively rotates /g2 in the (1,40) plane and allows to transition the classical Dirac equation in
physics from a hyperbolic octonion formulation into a new circular octonionic counterpart.

Physical frames of reference will now be defined as equivalent if the coordinate transformation from one into another leaves
the modulus dT of a new space-time sedenion d7.o,16 invariant.

From Y/eon1s (3) the positions of spacial dimensions and time with respect to the current conic sedenion algebra can be
identified. The following definitions use small variations dx,,:

drou = (0, do,0,0,0,0,0,0, 0,0,0,0,0,0,0,0) (4)
drae = (0,0,0,0,0, dvs, —dzs, dz1, 0,0,0,0,0,0,0,0) (5)
dTeon16 := d71q1 + exp (avip) dTq2 (6)

The corresponding modulus is:

dT := |chon16| = |d7‘Q1 + exp (aio) dTQ2| (7)
One can then formulate a hypernumber modulus invariance theorem as follows:

Theorem 1 Two lab frames A and A’ are equivalent with respect to physical law if a linear transformation from the respective
/!

. coordinates leaves dT' from (7) invariant. This definition of relativity is consistent with current description in physics.

Ty tnto x

To provide proof, it will first be shown that without gravity the invariance condition on dT describes all central principles of
Special Relativity (Minkowski space-time, and mass-energy-momentum relation). Then, an alignment program will be developed
for large body (non-quantum) physics that allows to translate the hypernumber relations into the language and concepts of
General Relativity, and to prove its effective equivalence.

3 Equivalence to Special Relativity when Excluding Gravity
The following physical principles govern Special Relativity (see e.g. [7] chapters 1 through 5, or [8] chapter 13):

(1) Any two frames of reference that are in constant (non-accelerated) motion with respect to each other, or in no relative
motion at all, at any place in space T := (21, z2,23) and time ¢ := zg, are equivalent.

(2) The speed of light ¢ is constant in any equivalent frame of reference. The equation of motion for light (in the current
choice of ¢ = 1) is described as dt? — |df|2 = 0. In general, for any two equivalent frames of reference A and A’ the

L t/2

(for light: drsgr = 0). This is also called Minkowski space-time (metric).

(3) A body’s mass at rest m is a form of energy E. They relate to momentum § := (p1, p2, p3) through m? = E? — |]5’|2 which

. . . . . 2 2
transformation from respective z,, into z/, coordinates leaves the expression drdgy := dt? — |dZ|” = dt"* — |dZ’|” invariant

also remains invariant for equivalent frames of reference.

! Physical constants ¢, h, and G are set to 1 in this paper, since they are non-essential for the mathematical structure. This procedure
is also common in related fields of physics. In addition, all indices will be written as lower indices here; if present, a metric tensor will
be written explicitely. This deviation from common notation will later avoid a potential ambiguity in expressions on Euclidean (circular)
and Minkowski (hyperbolic) space-time metric. Hypernumber notation and definitions are carried forward from [5,6].

2 Please note that definition (4) in [5] is incorrect and should be Viyps := (—m,00,0,0,0, —0s, 02, —01), as well as definition (3) should
be Whyps 1= (1/)671p(i)71/)§71/)i171/)§7 —abb, —k, —1/)i3). The different definitions were the result of using a conic sedenion multiplication table
which identified the classical octonion element “{” with sedenion element —i4 instead of i4, therefore not being consistent with the cited
sources [3,13].



Principles (1) and (2) are geometrical conditions on space and time, whereas (3) is a relation in terms of physical properties
energy and momentum.

Lemma 2 With only its hyperbolic octonion subalgebra, relativity as defined through the invariant conic sedenion modulus dT
reduces to the space-time relations from the theory of Special Relativity (principles 1 and 2).

PROOF. The hyperbolic octonion subalgebra from (7) to the basis byyps € {1,41,42,13,€4,€5,6,£7} corresponds to anyps =
7/2. With exp (amypsio) = 9o and sedenion modulus from [3,4| one obtains:

dThypg = |d7’Q1 + iodTQ2|
= |(O, dx(,0,0,0,0,0,0, 0,0,0,0,0,—dxs3,dxs, —d$1)|

= {L/(dx% — da? — da? — da?)?

=\/dt? — |dZ|? (8)

Demanding invariance of d1yyps under a coordinate transformation of the x,, therefore corresponds to the invariance condition
dr2py = dt? — |di|? from Special Relativity and reproduces principle (2) above.

In order to satisfy principle (1), such a coordinate transformation between z, and 3:; coordinates of two equivalent frames
of reference A and A’ must exist, and be a function of constant relative speed between A and A’ only. The so-called Lorentz
transformation in physics satisfies this requirement, in addition to leaving drigy = dt* — |d:1?|2 invariant (see e.g. the first
chapters in [7] for a comprehensive introduction, or [8] section 13.4). This proves lemma 2.
2=F?— |]5'|2 from principle (3) can be shown to be a necessary condition when consistently defining dynamical
interaction through physical forces (see e.g. [7] chapter 6). This requires introduction of additional concepts from physics.

The relation m

But also if treating F = py and p’ as mere Fourier coefficients of time ¢ = x( and space & respectively (see also [6], or [9]
equation 75.8)

Y (x)= | ——=(p)exp |i W Ty (9)
0= [ oo |iSr

without further physical interpretation, one can show that the modulus of a hyperbolic octonion containing these p, reproduces
this important fundamental relation in physics, too?3.

Lemma 3 Formulation of relativity through hyperbolic octonions produces a result from classical physics, where the four-vectors
x = (t,Z) and p = (E,p) relate to each other through Fourier transformation, and satisfy corresponding invariance conditions

L2
drdpr = dt* — ‘d:z:’ and m2? = E2 — |p* (principle 3).

PROOQOF. In order to conclude from an invariance condition on space-time dT}ypg to an invariant energy-momentum modulus
Myyps, the derivatives of space and time 9, from con16 (3) will be related to Fourier coefficients momentum 7 := (p1, p2, p3)
and energy F := pg respectively. As opposed to the classical case, special consideration must be taken in hyperbolic octonion
representation with respect to the chosen exponential orbit.

In the definition of Wyyps [5] the traditional imaginary base ¢ was identified with the sedenion base i; when assigning the
real and imaginary parts ¢), and wL of the classical wave function elements 1, to coefficients on an octonion base.

This identification will be carried forward, and each ¢, is translated with (9) separately, in direct analogy to classical physics:

d*p o ]
¢,LL (.I) = —1/)#( ) X 11 vZy (10)
/ 2n’ p[ 2

Since the 1, only contain a real part ¢, and imaginary part 1/}L to the basis i1, the exponential term exp |iy Zi:o Py

commutes with the 1, (p), and multiplication with additional sedenion base elements will be associative (conic sedenions are
alternative [3]).

3 An implicit assumption is made that such expression through Fourier coefficients is actually possible, so that 9o (z) = iE ¢ (z) and
0;¢ (z) = ip; ¢ (x) allows to retrieve these coefficients. This is in analogy to current description in quantum mechanics, where i9p and
—30; are called “operators” on the wave function ¢ to retrieve “measurables” E and p’ (but note the sign convention of the dp and E
terms).



Setting anyps = 7/2 in (3) yields

Vhypgz(mvaoaovoaovoaovoa 0507050707_835825_81) (11)
=m + 110y — €503 + €602 — €701

and one can identify for the four components 9, in /1yps to their respective bases:

(1100) Yy (x) =11 (1 E) Yy (z) = —E ¢y (2) (12)
(—e503) Yy () = —es5 (i1p3) Yy () = €ap3 by, () (13)
(€602) ¥y (z) = g6 (11p2) Yy () = e7p2 Yy (2) (14)
(—e701) Yy (x) = —e7 (i1p1) Y () = €6p1 Y (2) (15)

The “operator” \/nyps (without m, which is constant) therefore relates to the following “observable” phyps:

DPhyps = —E + €4p3 + €6p1 + €7p2 (16)
:(—E,0,0,0,0,0,0,0, 05070707p3507p17p2)

Replacing operator \/nyps with observable phyps, the hyperbolic Dirac equation /hypsPhyps = 0 [5] can then be written as

Phyps Yhyps = MWnyps (17)

(m real), and modularity of the number system allows to identify for non-zero |¥pyps|:

|Phyps Whyps| = [Phyps| [Whyps| = [MWhyps| = [m] [Wnyps|

[Phyps| = [m] (18)

The hyperbolic octonion modulus Myypg of phyps is

Myyps = |phyps| = Y E? — |1512 = |m| (19)

2= — |15'|2 This proves lemma 3.

which reproduces the classical mass-energy-momentum relation m
Therefore, it has been shown that key fundamental principles from Special Relativity are mathematically described through
the hyperbolic octonion subalgebra of the invariance condition on dT" := |d7con16|- This includes Minkowski space-time and the
mass-energy-momentum relation m? = E? — |ﬁ|2 It is noted that m, E and p were used only as constants, and no physical
interpretation as mass, energy or momentum was needed.

4 Equivalence to General Relativity when Including Gravity

The invariant conic sedenion modulus |d7con16| in its general form (i.e. for any «) has been suggested to also describe
the gravitational force, for which current and experimentally proven description in physics is given by the theory of General
Relativity. When probing this suggestion for validity, special consideration must be taken with respect to the following;:

(1) The theory of General Relativity is built on principles that don’t exhibit an immediate relation to hypernumber arithmetic.
(2) Relativity as defined through an invariant hypernumber modulus has been developed from a quantum physical formalism,
whereas computational obstacles in General Relativity limit conclusive quantum gravitational calculations.

To avoid potential ambiguity or speculations with respect to quantum gravity, the following proof of equivalence will be limited
to the branch in physics that has been experimentally verified: Large body (non-quantum) gravitation.
The following will be demonstrated:

(1) For large bodies in physics, the gravitational force can be treated separately from other forces. Therefore, existence of a
“Natural Alignment of Elementary Equations” (NatAliE equations) program will be proposed that allows to project purely
gravitational effects from the invariant conic sedenion modulus (o = 0) onto a non-gravitational observer (o = 7/2).

(2) These effects will be applied to a known equation of motion of a non-gravitational observer. The so modified equation of
motion will prove equivalent to the linearized field equations from General Relativity.

4



(3) A known “bootstrap” argumentation will be referred to, which has been shown to lead from the linearized field equations
to the covariant field equations in General Relativity through consistent self-interaction of the gravitational field. This
reference will conclude the proof.

In the absence of a current, generally agreed-upon quantum theory of gravitation, this approach appears to be reasonable and
sufficient for non-quantum physics. Since it cannot be verified due to lack of empirical validation and mathematical description
thereof, the following proposition must be added as prerequisite for the proof:

Proposition 4 For large body (non-quantum) physics a “Natural Alignment of Elementary Equations” (NatAliE Equations)
program is possible that calculates purely gravitational effects separately from other physical forces and effects. The gravitational
effects will be deduced from the circular octonion subalgebra in |drconi6|, all other effects from the hyperbolic octonion subalgebra.
When an equation of motion is expressed in a way that unambiguously separates terms which originate from the gravitational
force from any other terms, one can project results from circular octonion (Euclidean) space-time onto otherwise hyperbolic
octonion (Minkowski) formulations. This correctly describes gravity within said scope.

The following statements support the argument for this proposition:

(1) The known ability of a quantum system to be in more than one distinct state simultaneously - prior to measurement -
is reflected in the continuous “mixing angle” o in d7eon16. Transition to large body (non-quantum) physics removes this
degree of freedom, and particles and forces must either act with respect to the distinct & = 0 or a = /2 space-time.

(2) The circular octonion subalgebra of S/con16Wcon16 = 0 has exhibited a signature of gravity (treating particles and anti-
particles alike [6]), which is a behavior distinct from the hyperbolic octonion subalgebra that was proven above to be
equivalent to Special Relativity (excluding gravity).

(3) It is possible that current description of gravity in General Relativity evolved from a traditional point of view that
describes gravitational measurements and descriptions as variations of the space-time that governs the electromagnetic
force: Hyperbolic Minkowski space-time predominates human everyday perception of a world made from atoms (electrons
and nuclei in electromagnetic interaction) and light (electromagnetic radiation).

(4) Therefore, expressing space-time in both circular (Euclidean) and hyperbolic metric in parallel, and then projecting the
relations from circular geometry onto hyperbolic geometry, appears to be a valid mathematical procedure to investigate
gravity in conic sedenions.

It is concluded that proposition 4 is justifiable with respect to the current state of mathematical description of physical law, to
be empirically verified or falsified in the future.

4.1  The “Natural Alignment of Elementary Equations” (NatAliE Equations) Program

Relations from the circular octonion subalgebra (o = 0, expigae = 1) contained in the invariance condition on the conic
sedenion modulus |d7eon16| can be calculated by comparison with the corresponding hyperbolic octonion subalgebra above
(v =7/2, expiga = ip).

In analogy to (8) one obtains

dTcivg = |d7’Q1 + dTQ2|
= |(O, dxo,0,0,0,dxs, —dxo,dx;, 0,0,0,0,0,0,0, O)|

= \Jdt? + |di)? (20)

and calculations similar to the ones leading to (19) yield:

McirS = |pcir8| - \/ E? + |ﬁ|2 (21)

This new property * will now be called a body’s “circular mass”, as opposed to a body’s “hyperbolic mass” Mhyps-
In Special Relativity the classical (“hyperbolic”) Lorentz transformation warrants invariance of terms dThyps and Mpyps for
frames of reference that are in non-accelerated relative motion (e.g. [8] section 13.4), or no relative motion at all. Using relative

4 By comparison with the classical (hyperbolic) Dirac equation, Myyps was earlier identified with the mass at rest m of a body. One
may now argue that Mg corresponds to a body’s heavy mass (which gravitationally generates weight) since it is defined on purely
gravitational circular (Euclidean) space-time; whereas Mnyps may correspond to a body’s inert mass (i.e. its resistance to acceleration).
While this physical interpretation may be possible, the descriptive symbols Myyps and Meirg will still be used to highlight the notion that
both are limited projections of a wider concept Mconi6 := |Pconis|-



speed ¥ between two such lab frames A and A" with respective coordinates z,, and xi“ a new “circular” Lorentz transformation
Acirg Will now be defined:

—1/2 —1/2
(1+|17|2 |a|(1+|a|2 0 0
—1/2 —1/2
— 13 (1 +131*) (1+1a7°) 0
AcirgZZ (22)
0 0O 1 0
0 0O 0 1
3
‘I,/u - Z (AcirS)MU Ty
v=0

The z; axis in this representation is oriented per definition in the direction of the connecting vector between each two attracting
masses A and A’ (or a mass in A that generates a gravitational force on an observer in A’), which is generally different from the
direction of relative motion . This definition of orientation narrows the frame of reference concept here to pairwise gravitational
interaction: The direction affected by the circular Lorentz transformation Ag;,s depends on where the observer in A’ is located
relative to the gravity generating mass in A. It can therefore be called a “local” transformation, whereas the classical Lorentz
transformation is defined globally (for any mass distribution at any x,) by orienting the z; axis in the direction of relative
motion ¢ of the observer. Nevertheless, moduli are magnitude without orientation and remain invariant globally in both cases.

Lemma 5 For two frames of reference that are in constant (non-accelerated) motion with respect to each other, or no relative
motion at all, at any place in space T := (x1,x2,x3) and time t := xq, the circular Lorentz transformation leaves the circular

octonion modulus dTss = \/dt? + |df|2 invariant.

PROOF. The transformation (22) on |z| = 1/t + |7 = 1/22203:,% yields:

1= 35 (3 ) 29

v=0
12 -1 2 — =12 9
= (1+|v| ) (x0+2|v|:1c0:101+|v| xl)
S2\ (122 o = 2 24 2
+ (1—|—|v| ) (|v| x5 — 20| zoxs —0—3:1) + a3 + 23

=/ X0 _0r% =/t + |7

Since Acirs is only a function of relative speed ¥, it is valid at any position in space and time. Because ¥/ is constant (no relative
acceleration; d = 0 = dA.is = 0) it also leaves

ATy = |da'| = /3 _oda’?

= 23: (23: (Acirs) de)Q (24)

pn=0 \r=0

invariant. This proves lemma 5.

The identity

Meivs _ dTeirs
Mhyps dThyp8

(25)

derived from the Fourier coefficient pairs (F, |p]) and (¢,|Z]), together with relative speed |0] = |dZ| /dt between A and A’,
yields a projected value of Mg in hyperbolic space-time:



Mo _ (B 41" _ 14100 (26)
Mhyps E? — |Z7|2 1- |17|2

1+ |77
McirS = MhypS % (27)
1 — |7
The mass term Mg, which is to be used in purely gravitational context only, is increased as compared to Myyps.
A consequence of the circular Lorentz transformation is that distances || as observed in A’ appear expanded to
| = 12| \/1+ [ (28)

for an observer in A, if this distance is parallel to the connecting vector between A and A’. Distances perpendicular to the
connecting vector between A and A’ remain unchanged. This length expansion is the counterpart of classical length contraction
from the hyperbolic Lorentz transformation, for which distances subject to length contraction are parallel to the vector of relative
motion 9. The difference between length contraction and length expansion, as well as, the difference in spacial orientation of
affected distances versus invariant measures in the perpendicular planes, will need to be taken into account when projecting
gravity from circular (Euclidean) space-time onto hyperbolic (Minkowski) spacetime.

In order to execute proposition 4 one needs to bring an equation of motion in large body (non-quantum) physics into a form
that unambiguously separates terms originating from the gravitational force from any other terms, and then perform above
projections from circular (Euclidean) onto hyperbolic (Minkowski) space-time. This defines the NatAliE equations program.

4.2 Prerequisites from Physics

The following are known relations in physics, together with some immediate deductions therefrom, to be used to prove
equivalence of the NatAliE equations program with General Relativity for non-quantum physics. Unless otherwise specified,
all following physical terms and properties (like Anyps, T, Muv, v, P; Guvs Ruw, Or ¥) are functions of time and space x,,
(1=0,1,2,3).

4.2.1 Tensors and the Classical (Hyperbolic) Lorentz Transformation

The classical hyperbolic Lorentz transformation Anypg from x into 2’ coordinates can be expressed in symmetric 4 x 4 matrix
form (e.g. [7], or [8] section 13.4):

Oz, Oz,
(Anyps),, = (Anyps) ., = oxl, oz, (29
A tensor of second order T),, satisfies the following transformation rule from z into 2’ coordinates per definition:
i Ox Ox
r p o
Tow = Z <8w’) ((%c’ > oo
p,0=0 H v
3
= Z (AhypS)W (AhypS)gu Tho (30)
p,0=0
In abbreviated matrix arithmetic this can be written as:
T’ = AnypsAiypsT
AT (31)

As a special case, if a physical relation can be brought through a certain choice of coordinates into a form that uses the
Kronecker symbol 6,,,, one can generalize this physical relation by interpreting 6,, as a coordinate-dependent representation
of an otherwise general tensor:

3
Opv = Z (Ahyp8)p# (Anyps) gy, Opo

p,o=0

= (Aﬁypéﬂ)w (32)



The square of the classical Lorentz transformation Aﬁypg is the tensor that generalizes 6,, for any equivalent frame of reference
with respect to Special Relativity.

For tensor calculus in general, if a linear relation between tensors is valid in one particular choice of coordinates x,, (or frame
of reference A), its validity can automatically be inferred for any equivalent coordinate system zj, (or frame of reference A’).

4.2.2  Speed, Four-Velocity, and Ezplicit Form of the Classical (Hyperbolic) Lorentz Transformation
The speed ¢ of a physical body is its propagation in space dZ during a particular time interval dt = dxg:

dz

i (33)

ﬁ:

This definition of speed generally transforms non-linear from one frame of reference A into another A’ (see e.g. [8] section 13.5).
Therefore, a four-velocity (or “invariant speed”) u,, is defined as

d |z e
JJH X
el I 4

which transforms from A into A’ coordinates through the linear Lorentz transformation:

3
ul, =Y (Anyps) ,, thy (35)

v=0

The classical Lorentz transformation and its square can then be written as®:

Uug U1 00
Ul U 00
Anyps = (36)
0 010
0 001
u% + u% 2uou 0 0
2uouq ug + u% 0 0
AﬁypS = (37)
0 0 1 0
0 0 0 1

4.2.3 The Energy-Momentum Tensor without Pressure (“Mass Tensor”)

The field equations of General Relativity are expressed with the use of an energy-momentum tensor that contains terms
from the motion of an arbitrary mass distribution, together with hydrostatical pressure p. For ideal gases and many highly
compressed hot bodies, p can be modeled from statistical random motion of individual particulates. In all other cases, it is an
aggregate physical property that is internally realized through quantum mechanical interaction between its constituents (like
e.g. a quark plasma during supernova explosion). Since quantum mechanical effects are excluded here, it will be assumed that
any pressure term could be realized by statistical random motion of many individual particulates, and therefore it will be set
to p = 0 further on®.

5 While these expressions are in coordinates for which the x; axis is oriented in the direction of relative motion between A and A’, it is
noted that a general form can be obtained for any coordinate system. Every general Lorentz transformation Ayyps and its square /_\ﬁyps
can be brought into the above form through a rotation in space a: Anyps := aAnypsa™*. Since /_ngps = Apyps and o' = o one obtains

Agyps = (a/_\hypgaﬂ)T = Anyps and therefore Alz,yps = AhypgAEypg = a/_\hypgl_\hypgafl = a/_\lz,ypgafl. In general, /_\hypg transforms the
same as ]\ﬁyps under any rotation in space «, and one can continue to examine the special case of above coordinate orientation without
losing generality.

6 This approach is correct if one can show that all remaining terms are equivalent with General Relativity for any amount of sources of
gravitation; including the 1 large point mass approximation for calculating the motion of a planet around a star, or ficticious calculations

for all 10%° (4 a few) atoms in that same star.



Omitting hydrostatical pressure, the energy-momentum tensor (e.g. [8] relation 18.72, or [10] relation 13.7) reduces to the
mass tensor M,,,,. Using mass density p and four-velocity u, from (34) the mass tensor is:

M, = puyu, (38)

All terms p and u,, are a function of space and time, and the resulting mass tensor M,,, can therefore describe an arbitrary
distribution of masses, which may be in any relative motion with respect to each other. For a single point mass (or particulate)
pq) the mass tensor M(;),,, can be brought through rotation in space into the form

ug uour 0 0
2
wouy uy 00
Mo = 0 0 00 (39
0 0 00

because the general four-velocity field u, reduces in this case to the distinct four-velocity of the point mass p(;).
With use of the Minkowski metric tensor 7, which is defined as

1 0 0 O
0-1 0 O
Ny = (40)
0 0-1 0
0 0 0 -1

and A7 ¢ from (37) the following identities can be verified for a point mass p:

3
> My = pay (ug —ui) = pg) (41)
p,v=0
2M 1y = Py Tar = P) (Afiyps) (42)

Since M(3),5 My, and (Aiypg)w are tensors and p(;) is a constant, the relation (42) is valid for any mass distribution M,,:

The transformation rules for all terms in this linear equation are the same, warranted through tensor calculus, and each point
mass can be transformed into another equivalent frame of reference, using classical hyperbolic Lorentz transformation and a
rotation in space, in a way that sets the direction of motion of another point mass p(41) in x1 direction. Infinite iteration over
infinitesimal masses p(;) therefore describes any mass density distribution:

(43)

2M,uu - me = p (Aﬁyp8),uu

4.2.4 Newton Gravity Generalized According to Special Relativity Rules

In [11] chapter 7 (“Incompatibility of Gravity and Special Relativity”) offers a detailed analysis on how expression of gravity
using a non-accelerated observer leads to an incorrect description of gravity. The hypernumber invariance theorem under inves-
tigation in this paper shares some core assumptions with this analysis, but applies modifications from projecting gravitational
terms from circular onto hyperbolic geometry.

Newton gravity ([11] equation 7.1) will be generalized for compatibility with the non-accelerated observer of Special Relativity
through a “Symmetric Tensor Gravitational Field” ([11] exercise 7.3, with detailed solution in box 7.1).

There, use of a metric tensor g,, allows to mathematically describe an invariant property dr? as a function of progression
in space dZ and time dt = dz( of a body as:

3
dr? = Z Guvdz,dx, (44)

w,v=0

Expressing the metric tensor g,, in terms of 7,, (40) and a new tensor h,, as

Guv ‘= Nuv + h,uv (45)



the generalization of Newton gravity becomes " :

3
Oy, = <a§ - Zaf) By = —8TM,,,, (46)
i=1

Relations of this form can be solved through so-called “retarded potentials”: Whereas the quantities h,, and M,, here are
a function of space & and time ¢ = x, the solutions for the h,, (t,Z) can be written in terms of M, (t — |F— &|,7), i.e. at an
earlier time coordinate (see e.g. [11] equation 18.14, or [10] equation 27.16):

My, (t—|F—2],%)

7= 7|

hw (6, 8) = =2 [ d°r (47)

4.2.5 Linearized Field Equations from General Relativity and “Bootstrap” Argumentation

Gravity is generated by all forms of energy alike, and the resulting force is always attractive. This makes it conceptually
simple, however, creates a computational challenge: Because physical fields are also carrier of energy, together with the very
masses that generate these fields, one cannot separate the field generating charges (the masses) from the resulting field anymore
(as it is possible e.g. with electromagnetism). The gravitational field and its sources are in dynamic balance.

This balance may be viewed from two conceptual angles: 1) “Dynamic geometry is the 'master field’ of physics” (from [8] box
18.1 which compares both viewpoints), or 2) a result of “a systematic approximation procedure” (from [10] section 27.6) that
starts on a so-called “flat” (non-dynamic) space-time geometry and the “linearized field equations” (as will be discussed now).
Immediate “Einstein derivation” of the field equations in General Relativity uses the first conceptual viewpoint, and derivations
from a flat space-time (like the so-called “spin-2 derivation”) the second. Both are proven equivalent and lead to the same
effective force8 .

The second approach is sometimes also called the “bootstrap” process due to the iterative nature of its refinement steps.
From the “dynamic geometry” viewpoint, this bootstrap process starts at a low energy deunsity approximation (the linearized
field equations) and subsequently refines it by consistently taking effects from higher mass densities and velocities into account.

Adopting this argumentation similar to current use e.g. in the “spin-2 model”, it will be concluded that it is sufficient for a
valid theory of gravitation to show that the immediate source terms of gravitation (masses in motion) generate a gravitational
field that is described by the linearized field equations from General Relativity.

With a metric tensor g,, as in (45) g, := N + hy the linearized field equations (see e.g. [11] equation 18.8b, or [10]

equation 27.14) can be written in the following form ?:
1
Ohy = —167 | M, — 3Pl (48)

With use of (43) this becomes

Ok = —87p (Afyps) (49)

nz
4.8 Proof of Equivalence of the NatAliE Equations Program with the Linearized Field Equations from General Relativity

Lemma 6 The NatAliE Equations Program for any Mass Density Distribution in Arbitrary Motion is Equivalent to the Lin-
earized Field Equations from General Relativity.

PROOF. The following will be executed:

" From |11] box 7.1 equation 7; note the additional factor 2 from definition of the h in equation 7.8c. Also, the energy momentum tensor
T, is reduced here to the mass tensor M, since pressure terms are set to 0.

8 While proven equivalent, derivations that originate on a flat space-time are sometimes considered inferior to dynamic geometrical
derivations, since any such flat space-time is proven to be not observable, and therefore out of reach by the experiment. It has even been
shown that one must necessarily arrive at the General Relativity field equations even when starting from an (unobservable) “arbitrary
a-priory background” [12], which does not need to be flat. Investigation of the invariant hypernumber modulus here may overcome this lack
of experimental accessibility, by demonstrating a fundamental mathematical arithmetic suitable for joint description of a new quantum
gravity and traditional quantum mechanics.

¥ Note that per definition the A in [11] or f in [10] consist of the h,, used here and an additional effective term —8x [Zi,azo T,mn,m] Nuw
which reduces for our choice of internal pressure p = 0 to —8mpn,,. This term does not vary as function of space and time, and is written
explicitely here on the right side of the equation.
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(1) Equation (46) is a relation that separates the generators of gravity M, from their effect on otherwise hyperbolic space-time
Ohyu -

(2) In its solutions (47) the terms p and 1/ |7 — Z| can be identified as purely gravitational: p is the mass distribution that
generates gravitation, and | — Z] is the effective distance for the gravitational force. Both terms p and 1/ | — #| must be
replaced with their projected values p’ and 1/ | — &'| from circular (Euclidean) geometry.

(3) Since (46) is a linear differential equation, one can calculate the effective solution for any p’ distribution by linear super-
position of its individual constituents.

(4) For a single constituent mass mig(;) the coordinates will be transformed in a way that allows to calculate the effect of
length expansion from (28) in the direction of motion v(;) = d¥(;)/dt(;) of the constituent mci.g(;)-

(5) The result for this special choice of coordinates will be generalized in tensor form, to be valid in any coordinate system.

(6) Since the resulting relation is linear and in tensor form, one is able to generalize the result for any number of individual
constituents myypg(r)-

(7) In its generalized tensor form, the relation is equivalent to the linearized field equations from General Relativity in their
low energy density approximation assumption.

This will conclude the proof.

4.8.1 Gravity on Hyperbolic Space-time

As shown in great detail in [11] exercise 7.3 and its solution in box 7.1, relation (46) defines a gravitation consistent with
Special Relativity, which was proven above to be described through the hyperbolic subalgebra of the invariant conic sedenion
modulus. This relation therefore qualifies as equation of motion on hyperbolic space-time geometry, onto which gravitational
effects from circular geometry can be projected according to the NatAliE equations program.

Terms h,, and M,, will now be replaced with h’W and M;W to symbolize that they are subject to modifications due to
projected results from circular geometry:

OR),,, = —87M), (50)

4.8.2  Identifying Gravitational and Non-Gravitational Terms

The solutions of (50) are similar to (47) and allow to identify terms that originate from the gravitational force: Masses M},
are the generators of a force that decreases with distance |7 — Z|:

M;/UJ (t_ |F_f| ,f)

7 =&

i (t,:f):—2/d3r (51)

Location and motion of the charges, on the other hand, will continue to be expressed in coordinates ¢t and Z that are consistent
with Special Relativity. This projects the influence of a gravitational force from circular space-time onto an equation of motion
on hyperbolic space-time.

4.8.3  Projected Results from Circular Geometry on a Single Constituent of M,

The general mass distribution p’ will now be separated into distinct constituent masses mcig()
p= M) (52)
1

Since (50) is linear in hj,, and M), := p'u,u, it is possible to calculate the effective result of any mass distribution p’ with
individual four-velocities u, by linear superposition.

4.3.4  Special Choice of Coordinates for a Single meig()

For a single m.;,s(y coordinates will be chosen for which w,, = (1,0,0,0) and mgg( is located at F(z) = (0,0,0). This
describes a body with mass m;.g(;) that is at rest in the coordinate origin. The mass tensor M(’Z)W (38) is then reduced to

Meirs(1) (n=v=0)
M(/l),uv = (53)

0 otherwise

and (51) only yields a non-zero result in h’( for p=v =0

l)pv
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Mecirg(l) (t - |f| 70)

h/(l)OO(tv f) =-2 Ed (54)
In this choice of coordinates, the relative speed of any observer !° ¥y with respect to meig() is then simply:

. dr

o= g (55)

According to (27) the projected value of mg.g() from circular onto hyperbolic space-time is the effective mass that generates
gravitational force on this observer:

Meirg(l) = Mhyps(l) (56)
Also, the distance effective for the gravitational force is length expanded (28):
. - S 2
|$L'/| = |$| 14+ "U(l)’ (57)
This yields hl(l)oo(tv Z) in terms of the effective projected values as:
- L2
. Muyps (8= 2],0) 1+ |7
h/(l)OO(t7 ‘T) =-2 = |f| ~ 2 (58)
V1 =[]
With definition of a field
Lo 1/2
= (1= 70[*) (59)

and the special choice of coordinates that put the progression of an observer in space dZ and time dt into the direction of
relative speed o' = d’/dt between observer and myypg(y, one can identify the effective metric from (44):

dr? = (1 + Wpyoo (1, f)) dt? — |dz|? (60)
= 12
mhyp8(l) (t - |$| 50) dz 2 2
=(1-2 1 — dt® — |d 61
< ) 7] +13 |d] (61)
t—|7,0
= (12 P LD ) (02

Mhyps(l) (t - |f| 70)> |df|2

— <1 + 2")/(1) |f|

This relation (62) can then be interpreted as space-time metric that is generated from an effective h,, (t, 7):

1000

mhypg([) (t — |f| ,0) 0100

h(l)uu(ta f) = _27(l) |,’f 0010 (63)
0001
Mhyps(1) (t - |f| 70)
= —2")/(“ |_, 5#1, (64)

10 An observer is any object that experiences the body’s gravitational force; coordinates are chosen individually for each m.is(;) so that
the observer is in motion, whereas mg;,s(;) is at rest. This accounts for the locality of the circular Lorentz transformation (22).
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4.8.5 Generalization for Any Frame of Reference

Relation (64) can be interpreted as solution to a new linear differential equation

Dh(l),“,(t, f) = _87TFY(l)mhyp8(l) (t, 0) 5#,/ (65)

and the Kronecker symbol d,,, can be generalized to the tensor Aﬁypg (32) for any choice of coordinates:

Oh @) = =870 My ps() Ay ps (66)

Using (43) this can be written as:

1
Ol = =167y (M(z)w - §mhyp8(l)nuu> (67)

4.8.6  Generalization for Any Mass Distribution

In analogy to the argumentation that leads from (42) to (43), all individual contributions from all myy,g() terms can be
added subsequently: The linear relations (66) and (67) in tensor form are valid for any equivalent frame of reference, and
individual contributions from the my, gy can be added up through linear superposition of the respective results.

With
pP= Z mhyp8(l) (68)
l

relation (67) becomes for any mass distribution M,,:

1
Oh, = —167y (M;w — §pn,w> (69)

4.8.7 Equivalence with Linearized Field Equations from General Relativity

The relation (69) as derived from the NatALE equations program only differs from (48) by a velocity field v = (1—|7]*)~1/2.

In the low energy density approximation used to derive the linearized field equations from General Relativity, only lowest
order occurrences of such factors 7 are carried forward. Additional factors are are approximated v = 1 and are considered a
higher-order correction.

From the “bootstrap” argumentation it is possible to quantify the exact magnitude of such higher-order corrections. Generally,
a significant increase in velocities in the source field M,,, leads to stronger curvature Oh,,,. An additional field factor + in (69)
has at least approximately the same effect, and can therefore be considered a higher-order correction that is excluded in the
derivation approach of (48).

Therefore, the field equations as derived from the NatAliE equations program are equivalent to the linearized field equations
as obtained from General Relativity, which proves lemma 6.

5 Conclusion, Outlook, and Comparison with Other Approaches to Physics on Non-traditional Numbers
5.1  Hypernumber Modulus Invariance Theorem Conclusion

The fundamental principles that govern Special Relativity were shown to be correctly represented through the hyperbolic
octonion subalgebra of the invariant conic sedenion modulus (7). The corresponding circular octonion subalgebra was used in the
argument for proposition 4, for the existence of a NatAliFE equations program that correctly describes large body gravitation.
It was argued that lack of empirical information on quantum gravitational behavior, or a generally accepted mathematical
description thereof, prohibits conclusive evaluation of this proposition at the moment: Hypernumber relations in this paper
were rationalized from comparison with current description of quantum mechanics, whereas General Relativity can only be
confirmed for non-quantum gravitation. It was argued accordingly that the NatAliE equations program is justifiable with
respect to the current state of mathematical description of physical law, and compatibility with gravity from General Relativity
was shown.

Therefore, it is now concluded that proper foundation for the hypernumber modulus invariance theorem (theorem 1) has
been established, limited only by outstanding experimental validation of its underlying assumptions.
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5.2 Outlook

Many concepts from physics were introduced and referred to when investigating the NatAliE equations program. With
|dTeon16| as established invariance condition that warrants validity of physical law in any equivalent frame of reference, these
concepts are not needed anymore: Further investigation of |d7.on16| may focus only on geometrical and number aspects, and
physical quantities (like E, p, or m) may be treated (again) without having to attach further meaning or interpretation from
physics; they may remain mere constants or Fourier coefficients.

In order to qualify conic sedenion arithmetic as a complete description of quantum mechanics, with respect to both the
electromagnetic and gravitational force, the concept of a physical “force field” is needed at last. The force field concept realizes
mathematical description of dynamic interaction between its generating charges, as well as field self-interaction. Such a concept
needs to be understood in terms of hypernumber geometry, to possibly find support for some argumentation from physics used
above (e.g. the gravitational force field is known to be a carrier of energy and therefore is generator of gravity itself).

5.8  Comparison with Other Approaches to Physics on Non-traditional Numbers

Charles Musés (1919-2000), who invented hypernumber arithmetics, has over time proposed potential approaches to physics
on hypernumbers. The following provides reference to some of Musés’ ideas in this field and distinguishes the current approach.
In addition, other recent investigation of physics on “split-octonions” is mentioned.

Investigation into quantum gravity in [13] explores similarity between hypernumber arithmetics and relations that appear on
“spin 2”7 gravity models in quantum field theory. These models are built on traditional hyperbolic Minkowski space-time only,
and are subject to further investigation whether or not projection of a gravitational exchange particle on circular space-time
would become a spin 2 particle in hyperbolic metric, and how such projection could be rationalized.

In the current paper, space and time are treated as coordinates with identical properties; they are assigned to different
coefficients in conic sedenion representation (3). This is in contrast to the notion in [14] which criticizes this approach (e.g. section
“The Asymmetry of Time and Space”). However, if one speculatively interprets the invariant hypernumber modulus dT" (7) as
some kind of “universal time” that always increases, this interpretation could become compatible with Musés’ argumentation,
due to the modularity of hypernumber bases: Being a modulus, d1T represents pure magnitude without direction, and is therefore
distinct from the dimensionality of number system components. While some space and time dimensions could still be associated
with individual number system coefficients, this new universal time would pose a dimensionless unifying concept.

A physical model that uses an unobservable extra dimension is proposed in [15]. While it is not obvious in this model how
relativity (as discussed in the current paper) could be warranted e.g. with respect to constant speed of electromagnetic radiation
(light), it is interesting to potentially tie unobservable physical dimensions to w hypernumbers, as suggested in the closing note
there.

In [16] Musés demonstrates how conic sedenions support a generalized concept of “reflection” as continuous geometrical
transformation from one into a mirrored state. Together with other important properties of hypernumbers (e.g. the product
modulus law, and certain power orbit properties), these reflections and similar transformations could become applicable in
physics: Interpreted as symmetry transformations on wave functions they may be further examined with respect to description
of fundamental forces.

Recent investigation by Merab Gogberashvili on so-called “split-octonions” ([17,18]) is also expressing fundamental physical
relations (the Dirac equation with electromagnetic field) in a number system that is not simply a matrix extension of traditional
complex numbers. It would be interesting to examine split-octonions and hypernumber octonion types for potential correlation.
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