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1 Notation and de�nitions will be arried forward from there; for detailed analysis of the pertaining hypernumber systems see [3,4℄.
2 Please note that de�nition (4) in [1℄ is inorret and should be ∇hyp8 := (−m,∂0, 0, 0, 0,−∂3, ∂2,−∂1), as well as de�nition (3) shouldbe Ψhyp8 :=
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▽Q1 := (−m, ∂0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (4)
▽Q2 := (0, 0, 0, 0, 0, ∂3,−∂2, ∂1, 0, 0, 0, 0, 0, 0, 0, 0) (5)
ΨQ1 :=

(

ψr
0, ψ

i
0, ψ

r
1, ψ

i
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

) (6)
ΨQ2 :=

(

0, 0, 0, 0,−ψr
2, ψ

i
2, ψ

r
3, ψ

i
3, 0, 0, 0, 0, 0, 0, 0, 0

) (7)The lassial (�hyperboli�) Dira equation then orresponds to α = π/2 and a new ounterpart on irular geometry to α = 0.The latter (α = 0) is subjet to investigation in this paper and will be alled �irular� Dira equation. The oni sedenionrelation redues in this ase to its irular otonion subalgebra zcir8 to basis elements bcir8 ∈ {1, i1, ..., i7} in the mapping:
(c[1], c[i1], c[i2], c[i3], c[i4], c[i5], c[i6], c[i7], 0, 0, 0, 0, 0, 0, 0, 0) 7→ zcir8 (8)The relation
▽cir8Ψcir8 = 0 (9)with ▽Q1 +▽Q2 7→ ▽cir8 and ΨQ1 + ΨQ2 7→ Ψcir8 an also be written in traditional matrix form on irular omplex numbersas:
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(10)(with ψµ := ψr
µ

+ iψi
µ
, µ ∈ {0, 1, 2, 3}).Proof: The previous statement will be validated in analogy to the lassial Dira equation mapping in [1℄. The four relationsof (10) are separated into their real and imaginary parts:
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1 = 0 (18)The irular otonion produt ▽cir8Ψcir8 is expliitely:
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The eight omponents of (19) an be identi�ed as left-hand part of equations (11) through (18), either idential or with theopposite sign. This proves that ▽cir8Ψcir8 = 0 (9) is indeed equivalent to the irular Dira equation in matrix form on irularomplex numbers.3 Eigenvetors of the Cirular Dira EquationThe onstants ~p := (p1, p2, p3) and E := p0 will be introdued, together with spae ~x := (x1, x2, x3) and time t := x0. Thisallows to speify four linear independent solutions of (10). If interpreted as eigenvalue equation, these solutions are eigenvetorsto the eigenvalue m:
Ψ+

1 := exp i (~p~x− Et)
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(23)The solutions Ψ±

1 only di�er from the Ψ±

2 through the sign before Et in the exponent, aside from simple reordering of vetorand matrix indies (0, 1, 2, 3) → (2, 3, 0, 1). This is in ontrast to the analogous solutions of the lassial Dira equation inphysis, where additional hanges in the vetor part of the eigenvetors aompany the di�erene in exponent sign 3 .
3 See introdutions into Quantum Eletrodynamis like e.g. [5℄, equation (23.11). There, the partile solution ψp (23.1) for positive3



Carrying forward this analogy to lassial physis and interpreting the Ψ±

1 and Ψ±

2 as partile and anti-partile solutionsrespetively, one �nds that in the irular ase the Dira equation only distinguishes between partiles (−Et) and anti-partiles(+Et) through our hoie of time axis. This invariane of the free spin 1/2 partile solutions under time reversal may be anexpeted property of a formalism desribing gravitational fore, whih a�ets both partile types identially.4 Green's Funtion of the Cirular Dira EquationIndependent from the atual method of introduing a gravitational �eld into the irular Dira equation, one may expet thatits Green's funtion will also remain invariant under time reversal. In physis, the Green's funtion on the lassial hyperboliDira equation is alled the partile's �propagator� (e.g. [5℄ �75).With use of
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(25)the irular Dira equation (10) an be written abbreviated as 4 :
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Ψ = 0 (26)Its Green's funtion G (x− y) with four-vetors x and y (y onstant) then satis�es:
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exp i (~p~x− Et). Similarly, the anti-partile solution (�negative frequenies�; ε = −E) from (23.2) is: ψ−p ∝ exp (ipx) = exp i (−~p~x+ εt) =
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4 Please note that all summations will be spelled out, and all summation indies will be lower indies. This is di�erent from notationtypial in physis, where the sum over dupliate indies is exeuted by default, and upper and lower indies indiate the presene of ametri tensor (like Minkowski metri ηµν ). The notation hosen here avoids a potential ambiguity: In the ase of irular otonions, themetri is Eulidean and the metri tensor δµν is unity and an be omitted. In the ase of the lassial hyperboli Dira equation, themetri is Minkowski and would be written expliitely as ηµν if present.4



yields:
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2 (the Fourier oe�ients of time x0 and spae ~x) requires speial onsideration with respetto whether events are in the future (x0 < y0) or in the past (x0 > y0), and treatment of the poles distinguishes partile andanti-partile behavior.For the irular Dira equation, however, the pole at m2 = E2 + |~p|2 re�ets the Eulidean geometry of the underlyingnumber system (irular otonions) and no suh onsideration with respet to the time axis is needed. The Green's funtionan be obtained in losed form using (28) as:
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(35)is symmetri in all four dimensions of x = (t, ~x) and p = (E, ~p), and does not require speial onsideration with respet toevents in the future (x0 < y0) or in the past (x0 > y0). As with the free partile solutions before, this ould be interpreted as arequired property of a formalism desribing gravity.5 Conlusion and OutlookWhile eigenvetors and Green's funtion of the irular otonioni ounterpart to the lassial Dira equation show invarianeunder time reversal, as one might expet from a quantum gravitational primitive, it remains open how gravitational interationould be introdued into this formalism. In order to do so, basi and far reahing physial questions will need to be answered:How an one de�ne equivalent frames of referenes to warrant universal appliability of physial law? How does the resultingformalism relate to General Relativity's undisputed validity for gravitation on large sales?5



Use of hypernumber arithmetis ould assist in answering these and other open questions. In this paper the oni sedenionrelation
▽con16Ψcon16 = 0 (36)was examined with fous on its irular otonioni subalgebra. Looking beyond gravitation, other hypernumber types (inpartiular w arithmeti) have been o�ered to be suitable for desription of fores in physis [6℄. The �nding here that the simpleonept of hypernumber rotation may relate to lassial and new physis appears enouraging for further exploration.AknowledgementsI am grateful to Kevin Carmody for his ontinued help with hypernumber arithmetis.Referenes[1℄ J. Köplinger, Dira equation on hyperboli otonions. Appl. Math. Comput. (2006), doi: 10.1016/j.am.2006.04.005.[2℄ M. Gogberashvili, Otonioni Version of Dira Equations. Int. J. Mod. Phys. A21:3513-3524 (2006)[3℄ K. Carmody, Cirular and Hyperboli Quaternions, Otonions, and Sedenions. Appl. Math. Comput. 28:47-72 (1988).[4℄ K. Carmody, Cirular and Hyperboli Quaternions, Otonions, and Sedenions - Further Results. Appl. Math. Comput. 84:27-47 (1997).[5℄ V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Eletrodynamis. Pergamon Press, 2nd edition, 1982.[6℄ C. Musès, Hypernumbers and Quantum Field Theory with a Summary of Physially Appliable Hypernumber Arithmetis and theirGeometries. Appl. Math. Comput. 6:63-94 (1980).
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