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tA method was demonstrated earlier on how extension of 
omplex number algebra using nonreal square roots of +1 
ould potentiallyaid mathemati
al des
ription of physi
al law, by transitioning between di�erent geometries through genuine hypernumber rotation. TheDira
 equation in physi
s 
an be expressed on hyperboli
 o
tonion algebra and then transformed into a 
ounterpart on 
ir
ular o
tonions,by means of 
oni
 sedenions as unifying number 
on
ept. This paper examines potential appli
ability of this approa
h by 
al
ulatingeigenve
tors and Green's fun
tion of the 
ir
ular o
tonion 
ounterpart to the 
lassi
al Dira
 equation. The results exhibit behavior thatone might expe
t from a quantum gravitational primitive.Key words: hypernumbers; 
oni
 
omplex numbers; M-algebra; sedenions; o
tonions; physi
s on hyperboli
 and 
ir
ular geometry;quantum gravity1 Introdu
tionMotion of free spin 1/2 parti
les (like e.g. ele
trons or protons) is des
ribed in quantum physi
s by the Dira
 equation. Thisfundamental building blo
k in 
urrent des
ription of ele
tromagneti
, weak, and strong for
es in nature has been shown tobe expressible through o
tonioni
 algebras [1,2℄. A method was demonstrated in [1℄ to transition the Dira
 equation betweendi�erent geometries using genuine hypernumber rotation 1 . In this paper, eigenve
tors and Green's fun
tion of a 
ir
ularo
tonioni
 
ounterpart to the 
lassi
al Dira
 equation, obtained after rotation in the (1, i0) plane, will yield behavior that onemight require from a relation that is fundamental to quantum gravity.While the hypernumber relation under investigation will be mapped onto traditional matrix and ve
tor form on 
ir
ular
omplex numbers, it must be emphasized that this pro
edure is only 
hosen here for pra
ti
al reasons: to use traditionalmathemati
al tools in examining a new and spe
ulative 
on
ept. If physi
al law would indeed further materialize through useof hypernumber arithmeti
s, more genuine appli
ation of the respe
tive number systems will be indi
ated.2 Cir
ular and Hyperboli
 Dira
 EquationsThe 
oni
 sedenion relation
▽con16Ψcon16 = 0 (1)to basis elements bcon16 ∈ {1, i1, ..., i7, i0, ε1, ..., ε7} 
an be transitioned from 
ir
ular to hyperboli
 geometry [1℄ using a realnumber 
oe�
ient α
▽con16 :=▽Q1 + exp (αi0) ▽Q2 (2)
Ψcon16 := ΨQ1 + exp (αi0)ΨQ2 (3)and the following de�nitions 2 :Email address: jens�prisage.
om (Jens Köplinger).

1 Notation and de�nitions will be 
arried forward from there; for detailed analysis of the pertaining hypernumber systems see [3,4℄.
2 Please note that de�nition (4) in [1℄ is in
orre
t and should be ∇hyp8 := (−m,∂0, 0, 0, 0,−∂3, ∂2,−∂1), as well as de�nition (3) shouldbe Ψhyp8 :=
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 sedenion multipli
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▽Q1 := (−m, ∂0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (4)
▽Q2 := (0, 0, 0, 0, 0, ∂3,−∂2, ∂1, 0, 0, 0, 0, 0, 0, 0, 0) (5)
ΨQ1 :=

(

ψr
0, ψ

i
0, ψ

r
1, ψ

i
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

) (6)
ΨQ2 :=

(

0, 0, 0, 0,−ψr
2, ψ

i
2, ψ

r
3, ψ

i
3, 0, 0, 0, 0, 0, 0, 0, 0

) (7)The 
lassi
al (�hyperboli
�) Dira
 equation then 
orresponds to α = π/2 and a new 
ounterpart on 
ir
ular geometry to α = 0.The latter (α = 0) is subje
t to investigation in this paper and will be 
alled �
ir
ular� Dira
 equation. The 
oni
 sedenionrelation redu
es in this 
ase to its 
ir
ular o
tonion subalgebra zcir8 to basis elements bcir8 ∈ {1, i1, ..., i7} in the mapping:
(c[1], c[i1], c[i2], c[i3], c[i4], c[i5], c[i6], c[i7], 0, 0, 0, 0, 0, 0, 0, 0) 7→ zcir8 (8)The relation
▽cir8Ψcir8 = 0 (9)with ▽Q1 +▽Q2 7→ ▽cir8 and ΨQ1 + ΨQ2 7→ Ψcir8 
an also be written in traditional matrix form on 
ir
ular 
omplex numbersas:
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
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



































ψ0

ψ1

ψ2

ψ3



















=



















0

0

0

0



















(10)(with ψµ := ψr
µ

+ iψi
µ
, µ ∈ {0, 1, 2, 3}).Proof: The previous statement will be validated in analogy to the 
lassi
al Dira
 equation mapping in [1℄. The four relationsof (10) are separated into their real and imaginary parts:
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1 = 0 (18)The 
ir
ular o
tonion produ
t ▽cir8Ψcir8 is expli
itely:
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The eight 
omponents of (19) 
an be identi�ed as left-hand part of equations (11) through (18), either identi
al or with theopposite sign. This proves that ▽cir8Ψcir8 = 0 (9) is indeed equivalent to the 
ir
ular Dira
 equation in matrix form on 
ir
ular
omplex numbers.3 Eigenve
tors of the Cir
ular Dira
 EquationThe 
onstants ~p := (p1, p2, p3) and E := p0 will be introdu
ed, together with spa
e ~x := (x1, x2, x3) and time t := x0. Thisallows to spe
ify four linear independent solutions of (10). If interpreted as eigenvalue equation, these solutions are eigenve
torsto the eigenvalue m:
Ψ+

1 := exp i (~p~x− Et)
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




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(20)
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
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
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2 := exp i (~p~x+ Et)


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2 := exp i (~p~x+ Et)


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(23)The solutions Ψ±

1 only di�er from the Ψ±

2 through the sign before Et in the exponent, aside from simple reordering of ve
torand matrix indi
es (0, 1, 2, 3) → (2, 3, 0, 1). This is in 
ontrast to the analogous solutions of the 
lassi
al Dira
 equation inphysi
s, where additional 
hanges in the ve
tor part of the eigenve
tors a

ompany the di�eren
e in exponent sign 3 .
3 See introdu
tions into Quantum Ele
trodynami
s like e.g. [5℄, equation (23.11). There, the parti
le solution ψp (23.1) for positive3



Carrying forward this analogy to 
lassi
al physi
s and interpreting the Ψ±

1 and Ψ±

2 as parti
le and anti-parti
le solutionsrespe
tively, one �nds that in the 
ir
ular 
ase the Dira
 equation only distinguishes between parti
les (−Et) and anti-parti
les(+Et) through our 
hoi
e of time axis. This invarian
e of the free spin 1/2 parti
le solutions under time reversal may be anexpe
ted property of a formalism des
ribing gravitational for
e, whi
h a�e
ts both parti
le types identi
ally.4 Green's Fun
tion of the Cir
ular Dira
 EquationIndependent from the a
tual method of introdu
ing a gravitational �eld into the 
ir
ular Dira
 equation, one may expe
t thatits Green's fun
tion will also remain invariant under time reversal. In physi
s, the Green's fun
tion on the 
lassi
al hyperboli
Dira
 equation is 
alled the parti
le's �propagator� (e.g. [5℄ �75).With use of
β0 :=
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
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
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
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
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


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i 0 0 0














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β1 :=



















0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0






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









β3 :=



















0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


















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


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m ≡



















m 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m



















(25)the 
ir
ular Dira
 equation (10) 
an be written abbreviated as 4 :
[

i
3
∑

ν=0

βν∂ν −m

]

Ψ = 0 (26)Its Green's fun
tion G (x− y) with four-ve
tors x and y (y 
onstant) then satis�es:
[

i

3
∑

ν=0

βν∂ν −m

]

G (x− y) = δ4 (x− y) (27)Expressing both G (x− y) and δ4 (x− y) as Fourier transforms
G (x− y) =

∫

d4p

(2π)4
G(p) exp

[

−i
3
∑

ν=0

pν (xν − yν)

] (28)
δ4 (x− y) =

∫

d4p

(2π)4
exp

[

−i
3
∑

ν=0

pν (xν − yν)

] (29)energies (�frequen
ies�) ε = +E is proportional to exp (−ipx) whi
h 
ontains a metri
 tensor (Minkowski metri
): ψp ∝ exp (−ipx) =

exp i (~p~x− Et). Similarly, the anti-parti
le solution (�negative frequen
ies�; ε = −E) from (23.2) is: ψ−p ∝ exp (ipx) = exp i (−~p~x+ εt) =

exp i (−~p~x− Et). Therefore, ψp exhibits the same spa
e-time dependen
y as Ψ±

1 , and ψ−p 
orresponds to Ψ±

2 a

ordingly.
4 Please note that all summations will be spelled out, and all summation indi
es will be lower indi
es. This is di�erent from notationtypi
al in physi
s, where the sum over dupli
ate indi
es is exe
uted by default, and upper and lower indi
es indi
ate the presen
e of ametri
 tensor (like Minkowski metri
 ηµν ). The notation 
hosen here avoids a potential ambiguity: In the 
ase of 
ir
ular o
tonions, themetri
 is Eu
lidean and the metri
 tensor δµν is unity and 
an be omitted. In the 
ase of the 
lassi
al hyperboli
 Dira
 equation, themetri
 is Minkowski and would be written expli
itely as ηµν if present.4



yields:
(

3
∑

ν=0

βνpν −m

)

G(p) = 1 (30)This 
an be solved by using the β matrix summation rule
1

2
(βµβν + βνβµ) = δµν (31)and the identity

3
∑

µ=0

3
∑

ν=0

βµβνpµpν =
1

2

3
∑

µ=0

3
∑

ν=0

[βµβνpµpν + βνβµpνpµ]

=
1

2

3
∑

µ=0

3
∑

ν=0

[(βµβν + βνβµ) pµpν ]

=

3
∑

µ=0

3
∑

ν=0

δµνpµpν =

3
∑

ν=0

p2
ν

(32)to:
G(p) =

∑3

ν=0 βνpν +m
∑3

ν=0 p
2
ν
−m2

(33)The Green's fun
tion G(p) has a pole for all m2 =
∑3

ν=0 p
2
ν

= E2 + |~p|
2, whi
h is distin
t from 
lassi
al physi
s where thepropagator's pole is at all m2 =

∑3

µ=0

∑3

ν=0 ηµνpµpν = E2 − |~p|2 (see e.g. [5℄ from equation 75.10 and following). There, thedi�eren
e in sign before E2 and |~p|
2 (the Fourier 
oe�
ients of time x0 and spa
e ~x) requires spe
ial 
onsideration with respe
tto whether events are in the future (x0 < y0) or in the past (x0 > y0), and treatment of the poles distinguishes parti
le andanti-parti
le behavior.For the 
ir
ular Dira
 equation, however, the pole at m2 = E2 + |~p|2 re�e
ts the Eu
lidean geometry of the underlyingnumber system (
ir
ular o
tonions) and no su
h 
onsideration with respe
t to the time axis is needed. The Green's fun
tion
an be obtained in 
losed form using (28) as:

G (x− y) =

∫

d4p

(2π)
4

∑3

ν=0 βνpν +m
∑3

ν=0 p
2
ν
−m2

exp

[

−i

3
∑

ν=0

pν (xν − yν)

]

=

(

i
3
∑

ν=0

βν∂ν +m

)

∫

d4p

(2π)4

exp
[

−i
∑3

ν=0 pν (xν − yν)
]

∑3

ν=0 p
2
ν
−m2

(34)The remaining integral
T (x− y) :=

∫

d4p

(2π)
4

exp
[

−i
∑3

ν=0 pν (xν − yν)
]

∑3

ν=0 p
2
ν
−m2

(35)is symmetri
 in all four dimensions of x = (t, ~x) and p = (E, ~p), and does not require spe
ial 
onsideration with respe
t toevents in the future (x0 < y0) or in the past (x0 > y0). As with the free parti
le solutions before, this 
ould be interpreted as arequired property of a formalism des
ribing gravity.5 Con
lusion and OutlookWhile eigenve
tors and Green's fun
tion of the 
ir
ular o
tonioni
 
ounterpart to the 
lassi
al Dira
 equation show invarian
eunder time reversal, as one might expe
t from a quantum gravitational primitive, it remains open how gravitational intera
tion
ould be introdu
ed into this formalism. In order to do so, basi
 and far rea
hing physi
al questions will need to be answered:How 
an one de�ne equivalent frames of referen
es to warrant universal appli
ability of physi
al law? How does the resultingformalism relate to General Relativity's undisputed validity for gravitation on large s
ales?5



Use of hypernumber arithmeti
s 
ould assist in answering these and other open questions. In this paper the 
oni
 sedenionrelation
▽con16Ψcon16 = 0 (36)was examined with fo
us on its 
ir
ular o
tonioni
 subalgebra. Looking beyond gravitation, other hypernumber types (inparti
ular w arithmeti
) have been o�ered to be suitable for des
ription of for
es in physi
s [6℄. The �nding here that the simple
on
ept of hypernumber rotation may relate to 
lassi
al and new physi
s appears en
ouraging for further exploration.A
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