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Abstract

When extending complex number algebra using nonreal square roots of 41, the resulting arithmetic has long exhibited signs for potential
applicability in physics. This article provides proof to a statement by C. Musés [1] that the Dirac equation in physics can be found in conic
sedenions (or 16-dimensional M-algebra). Hyperbolic octonions (or counteroctonions), a subalgebra of conic sedenions, are used to describe
the Dirac equation sufficiently in a simple form. In the example of conic sedenions, a method is then outlined on how hypernumbers
could potentially further aid mathematical description of physical law, by transitioning between different geometries through genuine
hypernumber rotation.
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1 Introduction

The Dirac equation in physics is a fundamental quantum mechanical relation, serving as equation of motion for a free spin
1/2 particle (like e.g. an electron or neutrino). It forms an elementary building block in current description of electromagnetism,
weak, and strong force. Charles Museés stated in [1] about the Dirac equation that “.. a simpler version of the equation using
only 16-dimensional M-algebra! is possible ...”. This mapping of a fundamental physical relation onto a non-associative number
system (in this case conic sedenions) departs from the traditional approach which uses matrix or tensor formalisms on associative
(circular) complex numbers.

Detailed analysis of the pertaining hypernumber systems has been performed [2,3], from which notation and definitions are
adapted here unless otherwise noted.

The Dirac equation will be written in this paper as a hyperbolic octonion product, which is a subalgebra of conic sedenions.
This will provide proof to Musés’ claim from above. Expressing the Dirac equation in such a non-associative arithmetic may
then offer an interesting opportunity for further exploration. Genuine hypernumber rotation may qualify as a new class of
symmetry transformations on the Dirac equation, and equip physicists with an additional mathematical toolset to further
explore and describe fundamental relations and forces in nature. The general method will be demonstrated in the example of
conic sedenions, where rotation in the (1,14¢) plane allows to transition the Dirac equation from hyperbolic to circular geometry,
thus “unifying” the classical relation with a hypothetical “other force”.

2 Dirac Equation in Hyperbolic Octonions

In order to keep concepts from physics to a minimum in this paper, only the most common explicit form of the Dirac equation
(the so-called “Dirac representation”) will be examined. Physical constants ¢ and h are set to 1 since they are non-essential for
the mathematical structure.

Email address: jens@prisage.com (Jens Koplinger).
! K. Carmody recently communicated his intention to use in future writings the term conic sedenions instead of sedenions ([2,3]) or
16-dimensional M-algebra ([1]). The new term creates a clear distinction with respect to number systems like in [4]. In a similar fashion,
the term hyperbolic octonions will be used in this article instead of counteroctonions to reflect their geometric quality as compared to
circular octonions (built on square roots of —1 only).
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A particle’s wave function W is expressed as a four vector containing circular complex v, := ¢}, + WL: with p € {0,1,2,3}
and upper index {r,i} denoting a component’s real and imaginary 2 parts. The 1, are functions on space 1, %2, 3 and time
xo. The abbreviation d,, is short for partial derivative 0/0x,,.

The classical Dirac equation can then be written as:
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A hyperbolic octonion zhyps to basis elements bnyps € {1,11,42,43,€4,€5,66,67} will be expressed through real number
coefficients c[bnyps] in the following notation:

znyps = (c[1], clir], cfiz], clis],  clea], cles], cleg], cler]) (2)
The particle’s wave function ¥ will be mapped per definition onto:
\I/hyps = (1/}{)5 1/}67 1/117 1/)117 1/}55 _¢127 _1/}§5 —1/%,) (3)

For any p, if 1), 1s mapped to ¢[bnyps] its imaginary counterpart @[JL is mapped to a c[bnyps - i1]. Therefore, the circular complex
imaginary basis element i is identified with the hyperbolic octonion basis element i1, or i = 4.
With definition of

VhypS = (_m78070707 07_637827_61) (4)

the Dirac equation can be written as generic hyperbolic octonion product:

Vhyps Uhyps =0 (5)

Proof: The four circular complex relations of the Dirac equation (1) are separated into their real and imaginary parts:
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2 For clarity, the imaginary base element for circular complex numbers will be written as i, without index. Such indexing would make

the Dirac equation hard to read and be unneeded. When using octonion and sedenion arithmetic, the circular complex 7 will subsequently
be identified with i; by definition, i.e. i = ;.



The hyperbolic octonion product VnypsWhyps (5) is explicitely:
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The eight components of (15) can be identified as left-hand part of equations (6) through (13), either identically or with the
opposite sign. This proves that /hypsWPhyps = 0 is indeed equivalent to the Dirac equation and therefore validates Musés’ claim
as stated in the introduction of this paper.

3 Hypernumber Rotation as Symmetry Transformation

In the current Standard Model for electromagnetism, weak, and strong interaction, physicists have successfully been able to
expand the Dirac equation by adding terms that warrant invariance under certain symmetry transformations on the operand
U. These transformations are generally expressed in matrix form on circular complex numbers.

In a simple example, use of hypernumber arithmetic will now be suggested as additional candidate for expansion of this
fundamental relation in physics. Without further speculating here about its actual relevance in describing physical law, the
following is intended to be a demonstration of method only. Instead of matrix form on circular complex numbers, hypernumber
arithmetic will become the genuine method of mathematical description.

A conic sedenion z¢on16 to basis elements beonis € {1,141, .-, 47, %0, €1, --., €7 } Will be expressed through real number coefficients
¢[beon16] in the following notation:

Zeon16 = (¢[1], c[i], ..., ciz],  clio], clen], ..., cle7]) (16)

Conic sedenions contain both a hyperbolic and a circular octonion subalgebra. The hyperbolic octonion subalgebra from above
(2) will be mapped to

Znyps — (€[1], cfin], e[iz], c[i3],0,0,0,0, 0,0,0,0, cled], cles], cleq], cle7]) (17)
and the circular octonion zg subalgebra to basis elements bei,s € {1,141, ...,i7} to:
zeirs — (C[1], c[i1], liz], c[is], c[ia], c[is], c[ig], c[i7], 0,0,0,0,0,0,0,0) (18)
With definition of

Va1 = (—m,8,0,0,0,0,0,0, 0,0,0,0,0,0,0,0) (19)
VQ2:= (0507050705837_82581; 050705070507050) (20)

the operator /nyps from (4) and a new circular octonion counterpart V/cirg can be written as:
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Vhyps = VQ1 + 10 VQ2 (21)
Veirs — VQ1 + VQ2 (22)

Similarly, definition of
\I/Ql = (1/}651/}551/}1{51/};705070507 050705070707050) (23)
Vg2 = (0,0,0,0, =95, ¢5, ¢5, 45, 0,0,0,0,0,0,0,0) (24)
allows to map the operand ¥yyps from (3) and a new relating U, to:
Wyps — Q1 + 0¥ q2 (25)
Veirg — V1 + Pqo (26)
Using a real factor a and conic sedenions Y/con16 and Weonig like
Veonl6 := Q1 + exp (aig) VqQ2
Weon16 := \I/Ql + exp (O”;O) ‘IJQ2

this allows for continuous transition of the Dirac equation \/nypsWhyps = 0 into a new circular octonionic counterpart:

VeirgWeirs =0 (27)

The Dirac equation corresponds to v = m/2 and its new counterpart on circular geometry (27) to a = 0.
In a physicist’s perspective and wording, the conic sedenion relation

VCOI’llﬁ\I]COnlﬁ =0 (28)

would therefore unify the classical Dirac equation on hyperbolic geometry with a new relation on circular geometry by means of
a mixing angle o. The expression exp (aip) could be interpreted as symmetry transformation of a new class formed by genuine
conic complex rotations.

Whether or not such hypernumber arithmetic will actually offer the benefit of describing physical law is subject to further
investigation. Finding the Dirac equation in hyperbolic octonion arithmetic appears encouraging, since it could open a window
to broadening traditional circular complex number arithmetic for description of the different symmetries and geometries of
physical forces.
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