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Research statement

Restate defining relations for Complex

Numbers in different ways, then

modify exactly one of these relations to

see how it can be made to work.
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Context

Charles A. Muses envisioned certain

number systems in 1970s.

Definitions were not proper, but somehow

intriguing.

John Shuster and I investigated two of

these, then we “fixed” them.
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“Fixed them”?

“Fixing” a number system?

Capture the essence.

Keep as similar as possible to the

Complex Numbers.

“W Space” after “w number”,

“PQ Space” after “pq number”.

J. Köplinger Beyond complex number exponentiation: Two prototypes.



Part 1

“W Space”: Elliptic complex numbers

with dual multiplication



Restating the complexes

C is 2D vector sspace.

{i ,−i} is solution set to:

conj (z) + z = 0,

conj (z) · z = 1 = z · conj (z) .
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Defining W space

W space W is also over the real 2D plane.

{(w) , (−w)} is solution set to:

conj (z) + z = 1,

conj (z) · z = 1 = z · conj (z) .

Addition?

Simply vector space addition.
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Defining W space

Multiplication? From

conj (z) + z = 1,

conj (z) · z = 1 = z · conj (z) ,

follows:

conj ((w)) = 1 − (w)

⇒ (w)2 = (w)− 1,

conj ((−w)) = 1 − (−w)

⇒ (−w)2 = (−w)− 1.

Two distinct points in the plane.
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Two power orbits ...

Figure:
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... one vector space

Figure:
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Two multiplication morphisms

W Space W contains two subspaces:

+W with 〈+W,×,+〉,

−W with 〈−W, ◦,+〉.

Each isomorphic to C, but

different multiplication.
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Side note: 2-category

On a side note:

〈+W,×,+〉 = 〈C, ·,+〉 = 〈−W, ◦,+〉 .

Define functor f :

f (×) = ◦, f (◦) = ×.

=⇒ W is a primitive 2-category.
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Multi star

”Multi-Star”

Repeated squaring:
(1) Start with coordinate,
(2) square in +W, −W,

(3) keep both results,
(4) repeat “infinitely”,
(5) plot convergence %.
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Exp(Z) from Taylor polynomial

exp (Z ) fractal:

(1) 1 + z + z
2

2!
+ . . .+ z

n

n!

(2) zn =

{

z · z · . . . · z
n times

}

(3) · is either × or ◦
(4) keep all results,
(5) repeat “infinitely”.

exp (w)
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Fractal zoom-in

J. Köplinger Beyond complex number exponentiation: Two prototypes.



Part 2

“PQ Space”: Doubly nilpotent

numbers in the 2D plane



Restating the complexes

C has additive group C+ from 2D vector
space addition (radius r , angle t).

Multiplicative group C× with norm s :

s (A · B) = s (A) s (B) .

Multiplication adds angles t:

t (A · B) = t (A) + t (B) .

Sets C+ and C× are identical, r = s .
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Defining PQ space

PQ has additive group PQ+ from 2D vector
space addition (radius r , angle t).

Multiplicative group PQ× with norm s :

s (A · B) = s (A) s (B) .

Multiplication adds angles t:

t (A · B) = t (A) + t (B) .

Set PQ× maps into PQ+ as r = s |sin (2t)|.
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Mappings between additive and multiplicative groups
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Mappings between additive and multiplicative groups
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Algebraic properties of PQ space

“Doubly nilpotent” because the square of

both axes map into the additive identity:

p2 ′
7→ (0, 0)

q2 ′
7→ (0, 0)

Nondistributive because for a, b, c , d ∈ R:

(ap + bq)× (cp + dq) 6=

acp2 + abcd (p × q) + bdq2 ′
7→ (0, 0) .
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Nondistributive algebra

Mapping a multiplicative subspace into an

additive subspace,

PQ× ′
7→ PQ+

,

may give rise to “nondistributive algebra”

class.
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Category?

Can PQ Space be written as a 2-category,

e.g. with functor

f
(

PQ×
)

= PQ+
,

f
(

PQ+
)

= PQ×?

Not sure.
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Butterfly-shaped “papillon” fractal

”Papillon”

Mandelbrot algorithm:
(1) Start at (0, 0),
(2) add (a, b),
(3) square,
(4) repeat at (2).
The final set are all
nondivergent (a, b).
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Outlook
“W Space” and “PQ Space” are fun.
Both have real exponentials.
Generalized exponentiation in 2D?
“Applied 2-categories”?
Nondistributive algebra?
Burgin hypernumbers?

Denver “3rd milehigh” in August!

Thank you for your attention!



References

[1] J. A. Shuster, J. Köplinger, Elliptic complex numbers with dual
multiplication, Appl. Math. Comput. 216 (2010), pp. 3497-3514.
personal version
http://www.jenskoeplinger.com/P/PaperShusterKoepl_WSpace.pdf

[2] J. A. Shuster, J. Köplinger, Doubly nilpotent numbers in the 2D
plane, Appl. Math. Comput. 217 (2011), pp. 7295-7310.
personal version:
http://www.jenskoeplinger.com/P/PaperShusterKoepl-
PQSpace.pdf

J. Köplinger Beyond complex number exponentiation: Two prototypes.


	Beyond complex number exponentiation
	W Space
	PQ Space
	Outlook
	References

