Hidden nonassociative structures in quantum mechanics

V. Dzhunushaliev and J. Köplinger

e-mail: vdzhunus@krsu.edu.kg, jens@prisage.com

June 22nd, 2009

General context

Ultimate goal of this research:

- Build a complete, consistent nonassociative quantum theory.
- Investigate its consequences.
- Model more physical forces with fewer assumptions.

Overview (1)

This talk is divided into 2 parts:

- Nonassociative quantum theory,
- Possible applications.

Part 1: Nonassociative quantum theory

- Unobservables from nonassociative parts of an operator.
- Supersymmetric nonrelativistic Hamiltonian.
- Nonassociative decomposition of supersymmetric momentum operator, spin operator, and strongly interacting fields.

Overview (2)

Part 2: Possible applications

- Heisenberg uncertainty and light cone on split-octonions.
- Dirac equation with electromagnetic field on split-octonions.
- Four dimensional Euclidean operator quantum gravity on complex octonions.
- Generalized dimensional reduction on octooctonions.

If we run out of time, talk is online at:

http://jenskoeplinger.com/P/Denver09.pdf

Part 1:

Nonassociative quantum theory

Classical quantum mechanics

Classical quantum mechanics:

- Wave functions Ψ generally unobservable,
- operators H,
- decompose Ψ into orthogonal eigenfunctions ψ_n ,
- eigenvalues h_n are observable.

Expectation values from classical quantum mechanics

$$\langle \Psi | H | \Psi \rangle = \sum_{n} h_{n} \int_{V} \psi_{n}^{*} \psi_{n} dV$$
 (1)

Nonassociative parts of an operator

Consequences from nonassociative parts of an operator H:

• Expression " $\langle \Psi | H | \Psi \rangle$ " ambiguous, since:

$$\int_{V} \psi_{n}^{*}(h_{n}\psi_{n}) dV \neq \int_{V} (\psi_{n}^{*}h_{n}) \psi_{n} dV, \qquad (2)$$

- loss of unitarity (" $\langle \Psi | HH^* | \Psi \rangle$ " = ?) \longrightarrow probability not conserved,
- nonassociative parts are unobservable in principle.

Unobservables

Unobservables are modeled by nonassociative parts of an operator, and cannot predict a measurement outcome. This is distinct from traditional "hidden variables", which could be measured in principle.

Challenges

Physics: How to approach $\langle \Psi | \nabla | \Psi \rangle$?

Algebra: How to handle differentials on a nonassociative background that may contain zero divisor and

nilpotent spaces?

Nonassociative structures required

Hidden, nonassociative structures must exist across all fields of quantum mechanics [1-5]:

	physical observables	hidden constituents
supersymmetric	Hamiltonian	
quantum mech.	(change over time)	
operator QM	momentum operator	
	(location in space/time)	
operator QM	spin operator	
	(internal freedom)	
quantum field	field operators	
theory	(dynamic interaction)	

Supersymmetric quantum mechanics

The Hamiltonian H in nonrelativistic, N=1 supersymmetric quantum mechanics, can be written with split-octonions u_j as $H = \frac{1}{2} \left(Q + \bar{Q} \right)^2$ with unobservables [2,4]:

$$Q = \sum_{j=1}^{3} (-p_j + iV_j) u_j^* = \sum_{j=1}^{3} \mathscr{D}_j u_j^*,$$
 (3)

$$\bar{Q} = \sum_{i=1}^{3} (p_j + iV_{,j}) u_j = \sum_{i=1}^{3} \bar{\mathcal{D}}_j u_j.$$
 (4)

Mathematical challenge (open question)

- How to evaluate differential operators \mathcal{D}_j on split-octonion background u_j that contains nilpotent and zero divisor spaces?
- Time dependency $\langle \Psi | \frac{dL}{dt} | \Psi \rangle = \langle \Psi | \frac{\partial L}{\partial t} + \frac{i}{\hbar} [H, L] | \Psi \rangle$? [4]

Supersymmetric momentum operator

The simplest supersymmetric algebra is defined as follows [3]:

$$[P^{\mu}, Q_a] = \sigma^{\mu}_{a\dot{a}} \bar{Q}^{\dot{a}}, \tag{5}$$

$$\left[P^{\mu},\bar{Q}^{\dot{a}}\right] = -\sigma^{\mu\dot{a}a}Q_{a}, \tag{6}$$

$$[M^{\mu\nu}, Q_a] = -i(\sigma^{\mu\nu})_a^{\ \dot{b}} \bar{Q}_{\dot{b}}, \tag{7}$$

$$\left[M^{\mu\nu}, \bar{Q}^{\dot{a}}\right] = -i \left(\sigma^{\mu\nu}\right)^{\dot{a}}_{b} Q^{b}, \tag{8}$$

$$\{Q_a, Q_{\dot{a}}\} = 2\sigma^{\mu}_{a\dot{a}}P_{\mu}, \tag{9}$$

$${Q_a, Q_b} = {\bar{Q}_{\dot{a}}, \bar{Q}_{\dot{b}}} = 0.$$
 (10)

Algebraic challenge (open question)

Is an algebraic decomposition of P_{μ} possible such that

$$P_{\mu} = \frac{1}{4} \sigma_{\mu}^{a\dot{a}} \{ Q_{a}, Q_{\dot{a}} \} ? \tag{11}$$

Spin operator

A nonassociative decomposition of the spin operator [3]:

$$[R^{\mu}, R^{\nu}] = 2M^{\mu\nu}, \qquad (12)$$

$$[M^{\mu\nu}, M^{\rho\sigma}] = \iota(\eta^{\nu\rho}M^{\mu\sigma} + \eta^{\mu\sigma}M^{\nu\rho} - \eta^{\mu\rho}M^{\nu\sigma} - \eta^{\nu\sigma}M^{\mu}(1))$$

$$(R^{\mu}, R^{\nu}, R^{\rho}) = (R^{\mu}R^{\nu})R^{\rho} - R^{\mu}(R^{\nu}R^{\rho}) = 2\varepsilon^{\mu\nu\rho\sigma}R_{\sigma}. \qquad (14)$$

Solutions

- 3-component [3]: $R^i = -\frac{1}{4} \varepsilon_{ijk} [q_{j+3}, q_{k+3}]$ (split-octonions q_μ and $i, j, k \in \{1, 2, 3\}$).
- 4-component [10]: $R^0 = \frac{i_4}{2}(1+\iota)$ and $R^j = \frac{i_{(j+4)}}{2}(1-\iota)$ (complex octonions to basis $\{1, i_1, \dots, i_7\}$ with coefficients $\{1, \iota\}$).

Quantum field theory

We assume that operators of strongly interacting fields $\Phi_m(x^{\mu})$ can be decomposed into nonassociative constituents [5]:

$$\Phi_{m}(x^{\mu}) = f_{\alpha}^{i}(x^{\mu}) b_{i\beta}(x^{\mu}). \tag{15}$$

This would lead to additional terms for interacting fields:

$$\left(\left(\left(f_{\alpha_1}^{i_1}b_{i_1\beta_1}\right)f_{\alpha_2}^{i_2}\right)b_{i_2\beta_2}\right) = \left(f_{\alpha_1}^{i_1}b_{i_1\beta_1}\right)\left(f_{\alpha_2}^{i_2}b_{i_2\beta_2}\right) + \text{associator.}$$
(16)

Physics challenge (open question)

- Does such decomposition exist? What is the algebra?
- The quantum corrections from the associator may be similar magnitude as the fields. What is their physical meaning?
- Nonassociative parts of operators are unobservable; does this allow for a nonperturbative description of (unobservable) quarks and the strong force?

Summary: nonassociative structures

Summary of hidden, nonassociative structure in quantum mechanics:

	physical observables	hidden constituents
supersymmetric	Hamiltonian	nonassoc. operators:
quantum mech.	$H=rac{1}{2}\left(Q+ar{Q} ight)$	Q , Q unobservables
operator QM	momentum operator	Q_a , Q_a algebraic
	$P_{\mu}=rac{1}{4}\sigma_{\mu}^{a\dot{a}}\left\{Q_{a},Q_{\dot{a}} ight\}$	generators of SUSY
operator QM	spin operator	$q_{j+3},\ q_{k+3}$ are
	$\hat{s}^i = -rac{1}{4}arepsilon_{ijk}\left[q_{j+3},q_{k+3} ight]$	split-octonions
quantum field	field operators	f_{α}^{i} , $b_{i\beta}$ elements of
theory	$\Phi_m(x^{\mu}) = f_{\alpha}^{i}(x^{\mu}) b_{i\beta}(x^{\mu})$	nonassoc. algebra

Part 2:

Possible applications

Light cone and Heisenberg uncertainty

The invariant length element on split-octonions $\{1,j_1,j_2,j_3,I,J_1,J_2,J_3\}$, with $j_n^2=-1$ and $I^2=J_n^2=+1$, is [6,8]:

$$s = c(t + I\hbar\omega) + \sum_{n=1}^{3} (J_n x_n + j_n \hbar \lambda_n), \qquad (17)$$

$$||s||^2 = \left[c^2t^2 - |\vec{x}|^2\right] - \hbar^2\left[c^2\omega^2 - |\vec{\lambda}|^2\right].$$
 (18)

Space \vec{x} and time t are paired with their canonical transforms ω [energy⁻¹] and $\vec{\lambda}$ [momentum⁻¹].

Physics implications

- Maximum speed of light c and Heisenberg uncertainty $\hbar \leq \left| \frac{dt}{d\omega} \right|$, $\hbar \leq \left| \frac{dx_n}{d\lambda_n} \right|$ on the same geometrical footing.
- Open question: Does this hint at a unification of space-time and energy-momentum?

Dirac equation with electromagnetic field

The Dirac equation with electromagnetic field A_{μ} was expressed on split-octonions [7]:

$$\hbar \left[c \frac{\partial}{\partial t} + J^{i} \frac{\partial}{\partial x^{i}} \right] \psi + \left[-\left(mc + \frac{e}{c} A_{0} \right) + \frac{e}{c} A_{n} J^{n} \right] (I \psi) = 0 \tag{19}$$

The wave function ψ is a split-octonion, too. The fields are associated differently to ψ as compared to the differentials:

$$\nabla |\Psi\rangle + A |I\Psi\rangle = 0. \tag{20}$$

Physics considerations (open questions)

- How to calculate general expectation values?
- Maybe " $\langle \Psi | f(\nabla, A) | \Psi \rangle$ " notation is insufficient?
- What predictions come from the remaining algebraic freedoms?

Four dimensional Euclidean operator quantum gravity

Complex octonions (octonions $\{1, i_1, ..., i_7\}$ with complex coefficients $\{1, i_0\}$) allow to express the Dirac equation

$$(\nabla - m)\Psi = 0, \qquad \nabla = \sum_{n=0}^{3} \gamma^n E^n, \qquad (21)$$

with electromagnetic field A_n (on Minkowski space-time) and a counterpart on four dimensional Euclidean background [9]:

$$E_{\rm EM}^n = E_{\rm GR}^n = \partial_n + i_0 q A_n$$
 $(n \in \{1, 2, 3\}),$ (22)

$$E_{\rm EM}^0 = i_0 \left(\partial_0 + i_0 q A_0 \right) \longleftrightarrow E_{\rm GR}^0 = \partial_0 + i_0 q A_0, \quad (23)$$

$$\Longrightarrow E_{\rm EM,GR}^0 = \exp(\alpha i_0)(\partial_0 + i_0 q A_0). \tag{24}$$

The γ^n are modeled as octonion basis elements.

Physics consideration (same open question)

Yet again: maybe " $\langle \Psi | f(\nabla, A) | \Psi \rangle$ " notation is insufficient?

A generalized dimensional reduction on octooctonions

Octooctonions (octonions $\{1, i_1, \ldots, i_7\}$ with octonion coefficients $\{1, i_1, \ldots, i_7\}$) allow to generalize the Dirac equation further [10]:

$$(\nabla - m)\Psi = 0, \qquad \nabla = \sum_{n=0}^{3} \gamma^n E^n, \qquad (25)$$

$$\gamma^n \longmapsto \{1, i_1, \dots, i_7\}, \qquad E^n \longmapsto G\left(\{1, i_1, \dots, i_7\}, \partial_n\right). (26)$$

Chance at unification?

The algebra might be wide enough to include fermion generations [11], and the weak and strong force [10]:

<u>L 1'</u>							
Octonion index:	1	2	3	4	5	6	7
γ^n .	γ^1	γ^1	γ^2				γ^0
<i>Eⁿ</i> (dotted index):				E^1	E^2	E^3	E^0
Symmetry:	SU(2)						SU(1)
	SU(3)				SU(1)		

Conclusion

Nonassociative quantum theory is hot!

- Chance at nonperturbative color symmetry.
- Chance at fermion generations from algebraic generators.
- Chance at quantum gravity and unification.
- Chance at QFT and operator QM for all forces.

Next, do you want to work on ...

- ... generalizing prediction of expectation values?
- ... realizing color force nonperturbatively?
- ... supplying a weak and strong field on octooctonions?

Acknowledgments

Many thanks to the conference organizers and the NSF, who made Prof. Dzhunushaliev's participation possible through a travel grant.

References (1 of 3)

- [1] V. Dzhunushaliev, "Observables and unobservables in a non-associative quantum theory", *J. Gen. Lie Th. Appl.* **2** (2008) 269-272; arXiv:quant-ph/0702263.
- [2] V. Dzhunushaliev, "Nonassociativity, supersymmetry, and hidden variables", *J. Math. Phys.* **49** (2008) 042108; arXiv:0712.1647.
- [3] V. Dzhunushaliev, "Hidden structures in quantum mechanics", J. Gen. Lie Th. Appl. 3 (2009) 33-38; arXiv:0805.3221.
- [4] V. Dzhunushaliev, "Hidden nonassociative structure in supersymmetric quantum mechanics", arXiv:0904.2815.

References (2 of 3)

- [5] V. Dzhunushaliev, "A nonassociative operator decomposition of strongly interacting quantum fields", arXiv:0906.1321.
- [6] M. Gogberashvili, "Octonionic geometry", Adv. Appl. Clifford Algebras 15 (2005) 55-66; arXiv:hep-th/0409173.
- [7] M. Gogberashvili, "Octonionic version of Dirac equations", Int. J. Mod. Phys. A 21 (2006) 3513-3524; arXiv:hep-th/0505101.
- [8] M. Gogberashvili, "Octonionic electrodynamics", *J. Phys. A: Math. Gen.* **39** (2006) 7099-7104; arXiv:hep-th/0512258.

References (3 of 3)

- [9] J. Köplinger, "Gravity and electromagnetism on conic sedenions", *Appl. Math. Computation* **188** (2007), 948-953; preprints at http://jenskoeplinger.com/P.
- [10] J. Köplinger, "Nonassociative quantum theory on octooctonion algebra" (2009), preprint at http://jenskoeplinger.com/P.
- [11] C. A. Manogue, T. Dray, "Dimensional reduction", Mod. Phys. Lett. A14 (1999) 99-104; arXiv:hep-th/9807044.