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Complex-valued likelihood, prior and posterior distribution

Complexify the components of Bayes' theorem:

Ψ(θ | x) =
φ (x | θ)Ψ(θ)r

θ
φ (x | θ ′)Ψ(θ ′)dθ ′

Allow prior Ψ(θ), posterior Ψ(θ | x), and likelihood φ (x | θ)
to be complex-valued1 (by proposition).

Although these are not real-valued �distributions� or
�likelihood�, keep conventional terminology.

1The referenced slide set uses the term �spinor-valued� which is synonymous

in the complexes.
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Interpretation for use in quantum mechanics

Propose for modeling quantum mechanics:

Interpret the complexi�ed prior Ψ(θ) and posterior Ψ(θ | x)
as wave functions from quantum mechanics.

Measurement of a quantum system ΨQ (θ) corresponds to
�nding a likelihood φE (x | θ) such that the posterior
ΨM (θ | x) is real-valued:

ΨM (θ | x) =
φE (x | θ)ΨQ (θ)∫

θ
φE (x | θ ′)ΨQ (θ ′)dθ ′

In a pointed way, this makes quantum mechanics the �square
root of Bayesian inference�.
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Toy model in 1D: Particle and �elds

Build a toy model in one dimension:

Wave functions (posteriors) are built from complex-valued
priors and likelihoods over a real parameter θ .

The (noninformative) prior for a point particle of mass m is

Ψ(θ ;m) := e imθ .

Fields qj/(θ −θ0,j) from n charges qj at positions θ0,j

generate a likelihood

φ (θ ;q,θ0) :=
n

∏
j=1

|θ −θ0,j |iqj ≡ φ (q,θ0 | θ) .

Ψ(θ ;m) and φ (θ ;q,θ0) quantify ignorance of complex phase.
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Recovering the Born rule: �Making good choices�

The wave function for a particle with mass m under the in�uence of
n charges qj at positions θ0,j Then is:

ΨQ (θ ;qj ,θ0,j ,m) ∝

(
n

∏
j=1

|θ −θ0,j |iqj
)
e imθ ≡ΨQ (θ | qj ,θ0,j ,m) .

These are eigenfunctions with real eigenvalue m to operator

D̂ :=−i ∂

∂θ
−

n

∑
j=1

qj

θ −θ0,j
.

Requiring the wave functions to be eigenfunctions to D̂ with real
eigenvalue m is therefore consistent with �making good
choices� - in the Bayesian sense - for priors and likelihoods.
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Exponential function and multivalued logarithm

De�ne exponential function

expx := 1+
∞

∑
j=1

1

j!

x ∗ . . .∗ x︸ ︷︷ ︸
j times


as inverse to a generally multivalued logarithm:

logx :={y | expy = x}
={ln |x |+ i (Φ(x) +2πk)} .

Here, ln |x | is the real-valued logarithm, and Φ(x) the phase angle
from a chosen principal branch.
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De�ne expressions x
y as generally multivalued

Understand all expressions are sets of numbers, and identify:

logxy :=(logx)y (x ,y ∈ C\{0}) ,
xy :=exp((logx)y) .

Multivalued identities that hold in general:

x
y
1 x

y
2 = (x1x2)y ,

d

dx
xy =

(y
x

)
xy ,

Identities that require the same branch in each factor (�@k”):

{xy1xy2}@k =xy1+y2 ,

d

dy
(xy ) ={(logx)xy}@k .
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Putting it all together: Enumerating quantum states from branches
in the multivalued logarithm
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Multivalued exponentials and
√

Bayes

Allow multivalued exponentials in �the square root of Bayesian
inference� sketch.

Careful: Exponentials of the Euler number are multi-valued!

Speci�cally: Particle prior from earlier,

Ψ(θ ;m) :
??
= e imθ = exp((loge) imθ)

= {exp((1+ i 2πk) imθ)}
= exp(imθ){exp(−2πkmθ)} .

Interpreting the branch enumerator k as quantization of m,
the exp(−2πkmθ) terms are divergent for θ →−∞, k > 0
(and for θ → ∞, k < 0 likewise). This looks unphysical.

J. Köplinger QM in 1D from multivalued exponentiation



Recap: �The square root of Bayesian inference�,
√

Bayes
Recap: Multivalued complex exponentiation

Put together: Quantum states from logarithm branches
Test the theory

Next steps

Multivalued exponentials and
√

Bayes
Rede�ned particle prior, properties
Likelihoods generated by �elds
Good choices and the Born rule

Noninformative particle prior rede�ned

Instead of e imθ , choose di�erent particle prior:

Ψ(θ ;m,ϕ) := u (ϕ)m̄θ ,

with u (ϕ) := exp(iϕ) , ϕ ∈ R, m̄ :=
m

2π
.

All u (ϕ) lie on the unit circle in C.
All values of u (ϕ)m̄θ also lie on the unit circle:

u (ϕ)m̄θ = exp((logu (ϕ))m̄θ)

= {exp((iϕ + i 2πk)m̄θ)}

=
{

exp
(
i
(

ϕ

2π
+k
)
mθ

)}
.
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Properties of the rede�ned particle prior

The branch enumerator k ∈ Z doesn't change the geometry of
the solution space,

Ψ(θ ;m,ϕ) =u (ϕ)m̄θ =
{

exp
(
i
(

ϕ

2π
+k
)
mθ

)}
,

just the rate at which Ψ(θ ;m,ϕ) changes when θ varies.

For ϕ = π we have u (π) =−1 and

Ψ(θ ;m,π) =(−1)m̄θ =

{
exp

(
i

(
1

2
+k

)
mθ

)}
.

The
(
1
2 +k

)
m term resembles quantized energy ∼m of sorts.

From afar, looks suitable for physics.
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Likelihoods generated by �elds

Recalling �elds qj/(θ −θ0,j) from n charges qj at positions θ0,j to
generate a likelihood

φ (θ ;q,θ0) :=
n

∏
j=1

|θ −θ0,j |iqj .

For a given �eld j , multivalued exponentiation yields

φj (θ ;q,θ0) = |θ −θ0,j |iqj = exp((log |θ −θ0,j |) iqj)
={exp((ln |θ −θ0,j |+ i 2πkj) iqj)}
=exp((ln |θ −θ0,j |) iqj){exp(−2πkjqj)} .

The branch enumerators kj quantize qj . Looks suitable for physics.

J. Köplinger QM in 1D from multivalued exponentiation



Recap: �The square root of Bayesian inference�,
√

Bayes
Recap: Multivalued complex exponentiation

Put together: Quantum states from logarithm branches
Test the theory

Next steps

Multivalued exponentials and
√

Bayes
Rede�ned particle prior, properties
Likelihoods generated by �elds
Good choices and the Born rule

Did we make good choices? Born rule

Prior and likelihood choices are subjective, ad-hoc.

Why make those choices and not others?

Following interpretation from �quantum Bayesianism�
(�QBism�), the Born rule identi�es good choices.

=⇒ Test this!

Pick a sample scenario and apply the Born rule:

Find an operator to which the multivalued posterior is a set of
eigenfunctions with a real eigenvalue each.

Examine this set of eigenfunctions for orthogonality.

Execute measurement, discuss the result.
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Test the theory end-to-end, for a speci�c experimental set-up
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Experimental setup

The following is the experimental set-up:

One particle is subjected to a �eld generated by one charge.

The particle prior is given after chosing a mass, m, and a
phase ϕ as:

Ψ(θ ;m,ϕ) := (exp(iϕ))m̄θ =
{

exp
(
i
(

ϕ

2π
+k
)
mθ

)}
.

A �eld is generated by a charge q at the origin, θ0 = 0:

φ (θ ;q,θ0 = 0) := |θ |iq = Q exp((ln |θ |) iq) .

(with constant set Q := {exp(−2πk1q)}, k1 ∈ Z).
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Operator, eigenfunctions, eigenvalues

The wave function of the system, ΨQ, is the posterior

ΨQ (θ ;q,m,ϕ) =φ (θ ;q,θ0 = 0)Ψ(θ ;m,ϕ)

= |θ |iq (exp(iϕ))m̄θ

=Q exp((ln |θ |) iq)
{

exp
(
i
(

ϕ

2π
+k
)
mθ

)}
.

These are eigenfunctions to operator

D̂ :=−i ∂

∂θ
− q

θ

with real eigenvalues

D̂ΨQ =
{(

ϕ

2π
+k
)
mΨQ

}
@k

.

J. Köplinger QM in 1D from multivalued exponentiation



Recap: �The square root of Bayesian inference�,
√

Bayes
Recap: Multivalued complex exponentiation

Put together: Quantum states from logarithm branches
Test the theory

Next steps

Experimental setup
Operator, eigenfunctions, (real) eigenvalues
Orthogonality of eigenfunctions
Measurement: Likelihood and pseudo-distribution
Discussion

Operator, eigenfunctions, eigenvalues: special cases

On a side note, the special cases of ϕ ∈ {0,π} have eigenvalues
that are symmetric in k around k = 0:

ΨQ,0 = 1m̄θ |θ |iq =⇒ D̂ΨQ,0 = {kmΨQ,0}@k .

ΨQ,π = (−1)m̄θ |θ |iq =⇒ D̂ΨQ,π =

{(
1

2
+k

)
mΨQ,π

}
@k

Suggestive as these may look, without a time component the km

and
(
1
2 +k

)
m can't really be interpreted as �energy� eigenvalues.

Instead, the Ψ may be some kind of particle/�eld building blocks.
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Orthogonality of eigenfunctions

The eigenfunctions in

ΨQ (θ ;q,m,ϕ) = Q exp((ln |θ |) iq)
{

exp
(
i
(

ϕ

2π
+k
)
mθ

)}
are orthogonal: For any pair ka,kb ∈ Z there is∫

∞

−∞

ΨQ
(
θ
′;q,m,ϕ

)
@ka

Ψ∗Q
(
θ
′;q,m,ϕ

)
@kb

dθ
′

=Q2
∫

∞

−∞

exp
(
i (ka−kb)mθ

′)dθ
′

=
Q2

m
δ (ka−kb)

the Dirac-δ function with a constant set Q2/m = Q×Q/m.
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Measurement: Likelihood from experimental setup

�Measurement� is the set-up of an experiment that is described
exactly by a likelihood function that yields a real-valued posterior.

Prior ΨQ is the entire wave function:

ΨQ (θ ;q,m,ϕ) =Q exp((ln |θ |) iq)
{

exp
(
i
(

ϕ

2π
+k
)
mθ

)}
.

Likelihood φE is e�ected by the experiment:

φE (θ ;q,m,ϕ) := exp(−(ln |θ |) iq)
{

exp
(
−i
(

ϕ

2π
+k
)
mθ

)}
.

The product of ΨQ and φE is constant in θ , and real for the
same branches k :

{φEΨQ}@k = Q = {exp(−2πk1q)} ∈ R.
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Measurement: Probability pseudo-distribution

In this experimental set-up, we found an operator

D̂ :=−i ∂

∂θ
− q

θ

to yield real eigenvalues

D̂ΨQ =
{(

ϕ

2π
+k
)
mΨQ

}
@k

,

and an experimental set-up that gave us a constant probability
(pseudo-)distribution:

ΨM ={φEΨQ}@k = {exp(−2πk1q)} .
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Discussion

The Born rule is satis�ed, we made good choices. So far,
measurement wave functions

ΨM = {exp(−2πk1q)}

correspond to eigenvalues

D̂ΨQ =
{(

ϕ

2π
+k
)
mΨQ

}
@k

.

How to normalize the ΨM (or the ΨQ)?

Should we leave out �unphysical� values of k?

How about introducing a phase ϕ1 to k1?
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Next steps

Address open questions, for example:

Clarify how to turn the ΨM into proper distributions (i.e.
normalized to 1).

See how the particle quantum enumerator k relates to the �eld
quantum enumerator k1.

Extract actual measurement values.

Introduce a new �time� dimension, see what the algebra yields.

Compare these strictly algebraic results with conventional
quantum mechanics for clues towards answering the above.

***thanks
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