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What Bayesian inference does and doesn't do

Bayesian inference:

What is does: Give credible intervals for variable model
parameters θ from past data.

What is doesn't: Give con�dence intervals for future data x

from �xed model parameters.
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Likelihood and prior distribution

P(θ | x) =
f (x | θ)P(θ)r

θ
f (x | θ ′)P(θ ′)dθ ′

Schematically:

f (x | θ) is likelihood function for data x given some model
parameter(s) θ .

P(θ) is the prior distribution that encodes prior data, as well
as model assumption on how the data distributes.

P(θ | x) is the posterior distribution of model parameters θ

given observations and prior.

The maximum of P(θ | x) gives the most likely θ . Credible
intervals for θ correspond to areas under the curve.
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Conjugate priors

P(θ | x) =
f (x | θ)P(θ)r

θ
f (x | θ ′)P(θ ′)dθ ′

If P(θ | x) is in the same family of functions as P(θ), then
P(θ) is called conjugate prior to P(θ | x).

Posterior distributions P(θ | x) can then become new priors
P(θ) once more data comes in.
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Radioactive decay

For example, in radioactive decay we expect event times x to distribute
exponentially, given a decay rate θ . The Bayesian ansatz is:

f (x | θ) ∝ θe−θx (x ≥ 0) ,

P(θ) = Γ(α,β ) ∝ θ
α−1e−βθ ,

P(θ | x) =
f (x | θ)P(θ)r

θ
f (x | θ ′)P(θ ′)dθ ′

.

f (x | θ) is the likelihood for decay time x given a decay rate θ .

In the prior, P(θ), the α and β are hyperparameters that
encode previous data.

With these choices, P(θ) is conjugate prior to the posterior
P(θ | x), because both are gamma distributions in general.
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Radioactive decay: Step by step example

To give a step-by-step example:

Pick a noninformative prior, e.g. α = 1, β = 0,
P(θ) ∝ θ α−1e−βθ = const.

Perform a single measurement for decay time, x1.

The likelihood of θ from this is f (θ | x1) ∝ θe−θx1 .

Identify this as likelihood of x1, i.e. f (x1 | θ)≡ f (θ | x1).

Update the prior with this data, to get the posterior:

P(θ | x1) ∝ f (x1 | θ)P(θ) ∝ θe−θx1 .

J. Köplinger �Square root of Bayesian inference�



Bayesian inference
�Taking the square root�

1D toy model of QM
Next steps

What it does and doesn't do
Likelihood and prior distribution
Conjugate priors
Example: radioactive decay
The gamma distribution as conjugate prior

Radioactive decay: Criterion for �making good choices�

The posterior after taking one measurement x1,

P(θ | x1) ∝ θe−θx1 ,

can then be identi�ed as a new prior

P1 (θ) = Γ(α1,β1) ∝ θ
α1−1e−β1θ ,

with hyperparameters α1 = 2, β1 = x1.

More data changes the shape of P(θ) = Γ(α,β ).

A sharper peak in P(θ) means smaller uncertainty in model
parameter θ . This is the quality criterion that the (subjective)
choices for prior and likelihood were indeed �good choices�.
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Finding conjugate priors

The challenge in Bayesian inference:

Find priors that correctly encode prior data (if any), as well as
distribution assumptions of the model.

Noninformative priors are possible, which encode only some
distribution assumption but no data.

Conjugate priors are very helpful and mathematically elegant.

One versatile prior is the gamma distribution Γ(α,β ).
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The gamma distribution as conjugate prior

X ∼ Γ(α,β ) ,

PΓ (θ ;α,β ) =
β α

Γ(α)
θ

α−1e−βθ .

The gamma distribution is conjugate prior to . . .

. . . itself,

. . . the exponential distribution,

. . . the Poisson, pareto, and inverse gamma distributions,

. . . precision 1/σ of the normal distribution (known mean).
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Proposition: Spinor-valued prior and posterior

Try to �take the square root� of Bayesian inference:

Ψ(θ | x) =
φ (x | θ)Ψ(θ)r

θ
φ (x | θ ′)Ψ(θ ′)dθ ′

Allow Ψ(θ | x) and Ψ(θ) to be spinor-valued (by proposition).

Likelihood φ (x | θ) generally not positive real anymore,
requires clari�cation.

For now, leave interpretation or meaning open.
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Relate to quantum mechanics

What is the aim?

Find spinor-valued priors and posteriors that resemble
canonical quantum mechanics

Build a toy model to rationalize the general approach

Frame the work to be done, to reconstruct QM exactly

Super�cially, this resembles how Paul A. M. Dirac motivated the
Dirac equation by linearizing E 2 = m2 + |~p|2.
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Gamma distribution with complex spinors

As a concrete example, let the gamma distribution be complex-valued:

ΨΓ (θ ;q,m) ∝ |θ |iq e imθ (θ ,q,m ∈ R) .

Terms |θ |iq ≡ e iq ln|θ | and e imθ represent complex spinors.

Figure: Plot of ΨΓ (θ ;20,1) (credit: WolframAlpha, 2019)
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Gamma distribution with complex spinors (ctd)

A bit more general, de�ne Q := {qj ,θ0,j} and

ΨΓ (θ ;Q,m) ∝

(
n

∏
j=1

|θ −θ0,j |iqj
)
e imθ (θ ,qj ,θ0,j ,m ∈ R) .

Why? Because then an operator D̂ exists where
(
D̂−m

)
ΨΓ = 0

looks like some 1D Dirac equation with 1/θ �elds [2]:

D̂ :=−i ∂

∂θ
−

n

∑
j=1

qj

θ −θ0,j

[2] J. Köplinger, V. Dzhunushaliev, Nonassociative quantum theory, emergent probability, and
coquasigroup symmetry, arXiv:0910.3347 (2011).
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A one dimensional toy model of quantum mechanics

J. Köplinger �Square root of Bayesian inference�



Bayesian inference
�Taking the square root�

1D toy model of QM
Next steps

Particles and �elds
Quantum likelihoods and posteriors
Eigenvalue / eigenfunction rule for �making good choices�
Measurement
Relation to quantum Bayesianism

A 1D toy model of QM

Wave functions are posteriors that are built from spinor-valued
priors and generalized likelihoods over a real parameter θ .

The (noninformative) prior for a point particle of mass m is

Ψ(θ ;m) := e imθ .

Fields q/(θ −θ0) generate likelihoods

φ (θ ;q,θ0) := |θ −θ0|iq .

Ψ(θ ;m) and φ (θ ;q,θ0) quantify ignorance of spinor phase.
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Quantum likelihoods and posteriors

Put together, wave functions ΨΓ (θ ;Q,m) are posteriors built from
generalized likelihoods φ (Q | θ) and spinor-valued priors Ψ(θ ;m)
as:

ΨΓ (θ ;Q,m) =
φ (Q | θ)Ψ(θ ;m)∫

θ
φ (Q | θ ′)Ψ(θ ′;m)dθ ′

ΨΓ (θ ;Q,m) give us credible intervals for θ .

Need to clarify meaning and existence of complex-valued
likelihood, measurement.

Priors Ψ(θ ;m) and likelihoods φ (Q | θ) are given by
de�nition. Can we rationalize these choices somehow?
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Eigenvalue / eigenfunction rule for �making good choices�

By construction, we arrived at spinor-valued wave functions

ΨΓ (θ ;Q,m) ∝

(
n

∏
j=1

|θ −θ0,j |iqj
)
e imθ .

These are eigenfunctions with real eigenvalue m to operator

D̂ :=−i ∂

∂θ
−

n

∑
j=1

qj

θ −θ0,j
.

Requiring the wave functions to be eigenfunctions to D̂ with real
eigenvalue m is therefore consistent with �making good
choices� - in the Bayesian sense - for priors and likelihoods.
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Measurement

�Measurement� is setting up an experiment φE (Q,m | θ) that
interacts with the quantum system ΨQ (θ)≡ΨΓ (θ ;Q,m) in a
way that exactly yields a real-valued posterior ΨM (θ | Q,m):

ΨM (θ | Q,m) =
φE (Q,m | θ)ΨQ (θ)∫

θ
φE (Q,m | θ ′)ΨQ (θ ′)dθ ′

The posterior models the measurement probability distribution;
yet it is just another wave function that so happens to be
real-valued.

This is now interpreted as some projection from a quantum
reality in spinor space into an anthropocentric real space.
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Relation to �Quantum Bayesianism�

Shared concepts with �Quantum Bayesianism�:

Wave functions don't �collapse� (as in Copenhagen QM).
Instead, ΨM (θ | Q,m) encodes both the observed system
ΨQ (θ) and the experiment setup φE (Q,m | θ).

The Born rule in QM can tentatively be mapped here as
mathematical method to �nd good choices for priors and
likelihoods, as well as experiment setups φE (Q,m | θ) that
allow for human observation.

However, the current toy model is too limited to further evaluate
the Born rule mapping, since the eigenspace of D̂ above is exactly
one wave function.
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Next steps:

Research �Quantum Bayesianism� to determine the exact
context (overlap, discoveries already made, issues).

The step |θ |iq ≡ e iq ln|θ | silently assumed a real-valued ln |θ |.
This is an inconsistent limitation. Explore all ln |θ |± i 2πN.

Expand the 1D toy model, to using a wider class of spinors, as
well as using more dimensions.

Re-evaluate the tentative Born rule mapping in these expanded
models, and the overall approach in general.

With many thanks to John Huerta for helpful conversations and
advice.
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